Loading...
机构名称:
¥ 1.0

摘要:为了响应越来越多的气候关注,精确的工业二氧化碳(CO2)排放预测至关重要。采用先进的机器学习(ML)技术,本研究着重于使用来自数据数据集中的全球数据(包含有关水泥,煤炭,燃料,燃烧,天然气和石油工业的年度排放信息)的全球数据的预测工业二氧化碳排放。探索了包括支持向量回归(SVR),线性回归和XGBoost在内的各种回归模型,主要重点是时间序列预测年度CO2排放的模型。利用时间序列的预测,排放数据中复杂的时间趋势是有发现的,提供了增强的预测性见解。CO2预测文献进行了审查,收集和预处理数据,并实施了各种ML算法,然后进行了超参数调整。经过严格训练和评估的模型产生准确的排放预测。结果强调了由斯坦福大学与Facebook Inc.开发的Transformer模型和神经先知图书馆的出色表现,RMSE得分为416.58和470.30,与349.07和380.40相比,MAE的MAPE得分为0.01,MAPE得分均为0.01,相对较低。DEEPTCN还表现出竞争性的预测能力,但缺乏变压器模型和神经先知模型的准确性。与神经先知和变形金刚相比,包括Arima,Naive预测,自动回归(AR),指数平滑和Sarima滞后的传统模型。这些发现强调了ML在推进可持续的环境管理方面的有希望的作用,并为随后的研究努力铺平了道路。关键字:二氧化碳排放,工业排放,可持续性,环境AI,机器学习,时间序列预测。

定量分析和工业二氧化碳的预测...

定量分析和工业二氧化碳的预测...PDF文件第1页

定量分析和工业二氧化碳的预测...PDF文件第2页

定量分析和工业二氧化碳的预测...PDF文件第3页

定量分析和工业二氧化碳的预测...PDF文件第4页

定量分析和工业二氧化碳的预测...PDF文件第5页