• 大多数扭矩紧固接头不使用垫圈,因为使用垫圈会导致紧固过程中螺母和垫圈之间或垫圈和接头表面之间产生相对运动。这会改变摩擦半径,从而影响扭矩-张力关系。如果需要更大的轴承面,则可以使用法兰螺母或螺栓。如果要使用垫圈,与螺栓杆紧密贴合的硬垫圈可提供更低、更一致的摩擦,通常是首选。• 去除紧固件上通常存在的油膜会降低给定扭矩的张力,并可能导致紧固件在达到所需张力之前发生剪切。• 由石墨、二硫化钼和蜡配制的超级润滑剂可产生最小的摩擦。除非在指定的紧固扭矩中留有余地,否则诱导张力可能会过大,导致螺栓屈服和失效。但是,如果以可控的方式使用,这些润滑剂可以有效地降低扭矩,以产生所需的张力,这意味着可以使用较低容量的紧固工具。• 出于外观或耐腐蚀的原因,紧固件可能会镀层。这些处理会影响摩擦系数,从而影响扭矩与张力的关系。• 通常会故意在紧固件中引入摩擦,以减少因振动而松动的可能性。在确定正确的紧固扭矩时,必须考虑诸如锁紧螺母之类的装置。
将多种独立的信号处理策略结合在单个设备中的人工突触是实现类脑计算中高密度集成、能源效率和快速数据处理的关键因素。通过控制功能复杂性,在突触装置中使用由多种材料组成的混合物作为活性成分代表了在突触回路中编码短期增强 (STP) 和长期增强 (LTP) 的有效途径。为了应对这一巨大挑战,本文开发了一种新型 Janus 2D 材料,通过在 2D 二硫化钼 (MoS 2 ) 的两个表面上不对称地涂覆电化学可切换的二茂铁 (Fc)/二茂铁 (Fc + ) 氧化还原对和光响应的光致变色偶氮苯 (Azo) 来制备。通过改变电化学刺激的强度,可以控制 STP 和 LTP 之间的转变,从而触发 MoS 2 上 Fc/Fc + 对的电化学掺杂或控制此类氧化还原物质在 MoS 2 上的吸附/解吸过程。此外,通过激活偶氮苯化学吸附分子的光异构化并因此调节 2D 半导体的偶极子诱导掺杂,可以记录较低强度的 LTP。值得注意的是,电化学和光学刺激的相互作用使得构建人工突触成为可能,其中 LTP 可以提升到 4 位(16 个记忆状态),同时用作 STP。
摘要:二维 (2D) 半导体已被提议与现有的硅技术进行异质集成;然而,它们的化学气相沉积 (CVD) 生长温度通常太高。在这里,我们展示了在 50 分钟内在 560 °C 下直接使用 CVD 固体源前体合成连续单层 (1L) MoS 2 薄膜,在 450 至 600 °C、2 小时的热预算窗口内,以实现与现代硅技术的后端兼容。晶体管测量表明,在 1 V 漏极 - 源极电压下,100 nm 通道长度的导通电流高达 ∼ 140 μ A/μ m,这是迄今为止使用固体源前体在 600 °C 以下生长的 1L MoS 2 的最高值。在 6.1 × 10 12 cm − 2 电子密度下,传输长度法测试结构的有效迁移率为 29 ± 5 cm 2 V − 1 s − 1,这与在较高温度下生长的薄膜的迁移率相当。这项工作的结果为实现高质量、热预算兼容的 2D 半导体与硅制造的异质集成提供了一条途径。关键词:2D 材料、过渡金属二硫属化物、MoS 2、二硫化钼、BEOL、后端生产线、化学气相沉积、CVD 生长、载流子迁移率■ 介绍
近年来,已经报道了某些钼衍生物(例如二硫化钼)的抗癌和干细胞分化特性(MOS 2)。糖尿病作为一种慢性代谢疾病的症状,例如由于β细胞破坏而导致的胰岛素分泌不足或胰岛素功能障碍。每种当前糖尿病治疗方法都有局限性。在本研究中,研究了MOS 2-PEG对糖尿病RIN-5Fβ细胞中葡萄糖代谢的基因表达的影响,涉及葡萄糖代谢的基因的表达以及胰岛素分泌。合成的MOS 2 -PEG纳米片用于MOS 2对STZ诱导的RIN -5F细胞的可能影响。MTT分析,RT-PCR和激素分析用于研究MOS 2的抗毒性效应及其在改善糖尿病RIN-5F细胞功能中的作用。结果表明,在本研究中使用的剂量时,MOS 2是生物相容性的,无毒,并且显着增加了参与葡萄糖代谢以及抗凋亡基因BCl 2中GLUT4,GCK和INS基因在糖尿病RIN-5F细胞中的表达。此外,用MOS 2治疗增加了糖尿病RIN-5F细胞中胰岛素分泌。可以得出结论,MOS 2 -PEG代表了在糖尿病细胞中的保护作用,并显着改善了糖尿病细胞小鼠模型的治疗。这些结果表明,胰腺受损细胞中葡萄糖代谢涉及的表达基因增加。
摘要:二维(2D)半导体最近由于其独特的光学和电子特性而引起了光传递的极大兴趣。然而,对于单层光晶体管,可检测到的光谱范围和光吸收效率通常非常有限。在这里,我们演示了基于零差(0D)硅量子点(SIQDS)和二硫化钼(MOS 2)形成的范德华异质结构(VDWH)(VDWH)(VDWH)(VDWH),尤其是在Ultraviolet(UV)的光谱范围内,该光谱(MOS 2)表现出很高的检测和响应率。与单独基于单层MOS 2的光晶体管相比,SIQD/MONOLAYER MOS 2 VDWH光晶体管的探测率提高了100倍(从1.0×10 12到1.0×10 12到1.0×10 14 cm×Hz 1/2/w),响应率提高了89倍,响应率提高了66.7秒66.7至66.7 s/f。对于SIQD/几层MOS 2 VDWH,还观察到增强的检测和响应性。分析和对照实验表明,跨SIQD/MOS 2 VDWH的电荷转移导致光子效应和光量。高性能SIQD/MOS 2 VDWH光晶体管对超敏化光检测,基于紫外线的光学通信,神经形态视觉传感和发射速度计算应用具有巨大的希望。关键字:0d/2d van der waals异质结构,Si Quantum Dot,MOS 2,光晶体管,高检测性,高响应率■简介
二硫化钼(MOS 2)在菌株下具有许多有趣的证券和可能的技术应用。最近的一项实验研究检查了应变对单层MOS 2带对轻度弯曲石墨表面的带隙的影响,报告说,在双轴应变下,泊松比为0.44,带隙以400 MeV/%的速率降低。在这项工作中,我们使用广义梯度近似(GGA)PBE,混合功能性HSE06进行了密度功能理论(DFT)计算,并使用PBE波函数(G0W0@PBE)使用GW近似值进行了多体扰动理论。对于未经培训的单层,我们发现了理论与实验之间的带段的标准水平一致。对于实验泊松比的双轴菌株,我们发现,带隙以63 MeV/%菌株(PBE),73 MeV/%菌株(HSE06)和43 MeV/%菌株(G0W0@PBE)的速率降低,这些速率比实验率小。我们还发现,PBE预测不同的泊松比为0.25的速率(90 meV/%菌株)。自旋轨道校正(SOC)对间隙或其应变依赖性几乎没有影响。理论和实验之间的强烈分歧可能反映了底物对间隙应变依赖性的出乎意料的强烈影响。此外,我们观察到在应变下从直接到间接带隙的过渡,并且(在相等的双轴应变为10%)中,半导体到金属转变,与以前的理论工作一致。
在过去的 50 年里,电子产品彻底改变了我们的生活。如今,许多日常用品都依赖于电子电路,从无线耳机、智能手机和笔记本电脑等小工具到家用电器和汽车等大型设备。然而,电子设备的尺寸范围仍然相当有限,从毫米到米级。能够将电子产品的范围从红细胞大小扩展到摩天大楼,将使许多领域的新应用成为可能,包括能源生产、娱乐、环境传感和医疗保健。二维材料是一种具有多种电特性的新型原子级薄材料,由于其灵活性和易于集成性,有望用于此类极端尺寸的电子系统。从宏观上看,通过卷对卷制造在薄膜上生产的电子产品由于其高产量和低生产成本而具有巨大的潜力。为此,本论文探讨了使用定制设计的卷对卷装置通过热辊层压和电化学分层将二维材料转移到柔性 EVA/PET 基板上。详细描述了转移过程,并演示了多个 2D 材料层的层压。作为典型的大规模电子应用,讨论了具有石墨烯透明电极的柔性太阳能电池。在微观方面,本论文提出了一个 60x60 µm 2 微系统平台,称为合成细胞或 SynCells。该平台提供各种构建模块,例如基于二硫化钼的化学传感器和晶体管、被动锗定时器、用于驱动的铁磁铁,以及用于通信和能量收集的氮化镓 LED 和太阳能电池。探索了 SynCells 的几种系统级应用,例如在微流体通道中进行传感或在任意表面上喷涂 SynCells。
摘要:二维(2D)范德华异质结合了单个2D材料的独特特性,导致超材料,非常适合新兴的电子,光电,光电和自旋形成现象。在利用这些特性用于未来的混合电路方面的一个重大挑战是它们的大规模实现并集成到石墨烯互连中。在这项工作中,我们证明了二硫化钼(MOS 2)晶体在图案化石墨烯通道上的直接生长。通过通过限制的空间化学蒸气沉积生长技术增强对蒸气转运的控制,我们实现了单层MOS 2晶体在单层石墨烯上的优先沉积。原子分辨率扫描透射电子显微镜揭示了杂结构的高结构完整性。通过深入的光谱表征,我们在石墨烯/MOS 2中揭示了电荷转移,MOS 2将p-型掺杂到石墨烯中,如我们的电气测量所证实。光电导率表征表明,可以在MOS 2层覆盖的石墨烯通道中局部创建光活性区域。时间分辨超快的超快瞬态吸收(TA)光谱揭示了在石墨烯/MOS 2异质结构中加速的电荷衰减动力学,对于以下带隙激发条件的上转换。我们的概念验证结果为范德华异质结构电路的直接增长铺平了道路,对超快光活性纳米电子和播客应用具有重要意义。关键字:石墨烯,TMD,现场效应晶体管,范德华异质结构,超快,光活动电路■简介
8 三星电子有限公司三星先进技术研究所 (SAIT),韩国水原 16678 gwanlee@snu.ac.kr 摘要 (Century Gothic 11) 通过化学气相沉积 (CVD) 在具有外延关系的晶体基底(例如 c 面蓝宝石)上合成了晶圆级单晶过渡金属二硫属化物 (TMD)。由于 TMD 外延生长的基底有限,因此需要将转移过程转移到所需的基底上进行器件制造,从而导致不可避免的损坏和皱纹。在这里,我们报告了通过过渡金属薄膜的硫属化在超薄 2D 模板(石墨烯和 hBN)下方的 TMD(MoS 2 、MoSe 2 、WS 2 和 WSe 2 )的异轴(向下排列)生长。硫族元素原子通过石墨烯在硫族化过程中产生的纳米孔扩散,从而在石墨烯下方形成高度结晶和层状的TMD,其晶体取向排列整齐,厚度可控性高。生长的单晶TMD显示出与剥离TMD相当的高热导率和载流子迁移率。我们的异轴生长方法能够克服传统外延生长的衬底限制,并制造出适用于单片3D集成的4英寸单晶TMD。参考文献 [1] Kang, K. 等。具有晶圆级均匀性的高迁移率三原子厚半导体薄膜。Nature 520 , 656-660 (2015).[2] Liu, L. 等。蓝宝石上双层二硫化钼的均匀成核和外延。Nature 605 , 69-75 (2022) [3] Kim, K. S. 等人。通过几何限制实现非外延单晶二维材料生长。Nature 614 , 88-94 (2023)。
带有2D材料的膜表面涂层已显示出用于水处理应用的防婚特性。但是,目前基于真空过滤的合成方法不容易缩放。本研究描述了一种可扩展的方法,可用于涂层膜,包括氧化石墨烯(GO),六边形硝酸氢硼(HBN),二硫化钼(MOS 2)和二硫化钨(WS 2)。使用含氧剂将含有每类2D薄片的异丙基醇溶液喷涂到商业聚偏氟化物(PVDF)上。纳米材料用聚多巴胺(PDA)作为一个可以轻松地集成到可扩展的滚动过程中的方法中的交联。使用扫描电子显微镜,原子力显微镜,接触角,拉伸强度测量和傅立叶转换红外光谱法评估了形态,表面粗糙度,疏水性,机械耐用性和化学组成的变化。在72 h的膜蒸馏(MD)实验中测试了2D纳米材料涂层的膜,并将其与原始的PVDF和PDA/PVDF膜进行了比较。使用高浓度的腐殖酸(150 ppm)和石蜡油(200 ppm)的盐排斥和MD性能稳定性评估,从而模拟了从油气萃取中模拟简单的有机废水。通量下降比以每小时渗透率损失百分比(%/h)来衡量,以便将来与不同的实验时间进行比较。所有膜的盐分排斥很高(> 99.9%)。原始的PVDF膜在10小时后因结垢而导致孔隙润湿失败,而PDA/PVDF膜的通量下降率最大(0.3%/小时)。涂有GO和HBN的膜的通量下降比较低(分别为0.0021±0.005和0.028±0.01%/h)。Go涂层的膜是唯一能够治疗含有表面活性剂和含有污垢的饲料的膜类型。改进的性能归因于表面粗糙度和疏水性的降低,这降低了污垢表面上的污垢吸附。这项工作显示了一种可延展的可扩展方法来克服MD中的犯规限制。