摘要:信息社会的高速发展对信息的存储、处理和传输能力提出了越来越迫切的需求,随着摩尔定律的终结,半导体产业迫切需要寻找新的解决方案。二维材料因其原子级厚度的尺寸特性、表面无悬挂键的结构优势以及大比表面积带来的对电学和光学调控方法的敏感性,被认为是后摩尔时代半导体产业的新突破。松山湖材料实验室引进一批顶尖科学家,成立了二维材料团队,团队研究以基础科学为基础、工程应用为先导,重点攻关,目标是取得具有国际一流影响力的科研成果,布局我国二维材料产业。 DOI:10.16418/j.issn.1000-3045.20211208010-en
通过将碳和硅添加到碳化物表面上,我的论文揭示了一种创建二维碳化硅碳化物的新方法,这种材料可能导致更有效的电子设备。如大多数人所知道的那样,今天的电子产品严重依赖硅。为了改善我们的设备,这些硅电子设备已变得越来越小,但现在已经达到了极限。想象一下,如果不使用庞大的三维结构,我们可以使用堆叠在一起的超薄原子。这些床单被称为二维(2D)材料,自2010年获得诺贝尔奖获奖石墨烯以来就引发了一波研究。石墨烯是一层碳原子,向我们展示了2D材料可以彻底改变技术,但它有局限性。例如,石墨烯没有带隙,这对于控制计算机等设备中的电流至关重要,我们需要清除开/关状态(例如管理汽车流量的交通信号灯)。此频段间隙对于创建二进制二进制(电流)和零(无电流)是计算机逻辑的基础至关重要。带有带隙的材料称为半导体,具有直接带隙的材料对于LED,激光器和太阳能电池等设备特别有用。直接带隙就像是一条井井有条的道路,在交通信号灯处停止后,允许汽车平稳,高效地加速,而间接的频段隙就像是一条扭曲的道路,使汽车需要更长的时间才能达到全速。建立在这一发现的基础上,我的目标是直接在TAC水晶上创建2D SIC。在我的研究中,我专注于创建一种新的2D材料:碳化硅(SIC),将硅原子和碳原子组合成单层。科学家认为,2D SIC可能是一个改变游戏规则的人,因为它具有直接的乐队差距,但使其非常具有挑战性。最近,一个突破表明,在顶部加热用薄薄的碳化物(TAC)加热碳化硅晶体可以帮助形成2D SIC。通过将碳和硅添加到加热的TAC表面,我成功形成了2D SIC。这种方法使我可以更好地控制编队过程,并更深入地了解2D SIC的成长方式。另外,通过调整碳的量,我可以在2D SIC的顶部创建石墨烯层。石墨烯的稳定性提高了将其用作2D SIC上的保护层的令人兴奋的可能性。未来的研究可以探索这种可能性。最重要的是,我的作品展示了一种创建2D SIC的新方法,使其更接近被用于下一代电子和光学设备。这可能会导致更快,更高效的技术,继续我们用硅取得的进步,但将其提升到一个新的水平。
摘要:本文收集了两种类型的医学图像,它们来自 CT 扫描和超声系统,目的是在保持图像质量的情况下减少表示医学图像所需的位数。医学成像对疾病诊断和手术准备有很大影响。另一方面,由于医学图像数据量巨大,存储和传输是一个重要问题。例如,每张 CT 图像切片为 512 x 512,数据集由 200 到 400 张图像组成,平均数据量为 150 MB。对医学数据进行有效压缩可以解决存储和传输问题。医学图像使用提出的算法进行压缩,该算法包括两种技术,即离散余弦变换 DCT 和矢量量化 VQ。本文从收集医学图像开始,使用 MATLAB 通过 DCT-QV 开发压缩算法,并通过使用峰值信噪比 PSNR、均方误差 MSE、压缩比 CR 和每像素比特 BPP 测量原始图像和压缩图像之间的差异来评估这些技术的性能。实验结果表明,所提算法压缩后的图像质量较高,量化水平达到30%以上,压缩率达到可接受水平。
通过静电组装制备过渡金属碳化物/碳氮化物(MXene)@聚苯乙烯纳米复合材料,用于高效电磁干扰屏蔽。先进功能材料 2017,27,1702807。
图1:超导量子处理器的布局和架构。(a)2D超导量子处理器的示意图。橙色十字代表以8×8阵列排列的量子位。灰色圆圈是通过孔(25)进行3D接线。未显示接线的电极以简化。(b)量子阵列单元的电路图。每个量子位(橙色)都有一个用于微波炉和脉冲控制的XY Z控制线(黑色)。将量子夫妇伴侣与单个λ/ 4读出谐振器(黄色),又通常耦合到过滤器(绿色)。通过λ/ 2耦合谐振器(蓝色),两个相邻的量子位分散耦合。(c)Qubits的标签。两个损坏的量子位,即U03Q2和U22Q1,标记为蓝色。
虽然已经证明了硅具有更高迁移率的材料,包括锗和各种 III-V 材料,但它们最多只在少数小众市场得到成功应用和商业化。硅技术取得巨大成功的原因是多方面的,例如硅的天然氧化物 (SiO 2 )、极其成熟和精细的加工能力,以及 n 型和 p 型金属氧化物半导体 (MOS) 晶体管的存在,这使得高效互补 MOS (CMOS) 逻辑成为可能。随着尺寸的进一步缩小,人们付出了巨大的努力来改进制造方法,以使硅场效应晶体管 (FET) 的性能稳步提高。目前,硅晶体管的技术节点处于 10 纳米以下范围。然而,在如此小的器件中,短沟道效应 (SCE)、增加的可变性和可靠性问题 [1],以及 3 纳米以下通道的通道载流子迁移率降低 [2] 都对硅技术的继续使用构成了严峻挑战。为了克服由硅制成的超薄器件的缺点,近十年来,对晶体管结构替代材料系统的研究不断加强。所谓的 2D 材料已被证明对后硅技术特别有利,并有可能为上述硅技术的局限性提供解决方案。[3,4]
二维(2D)材料具有许多独特的特性,可以在各种应用中利用。尤其是,由于重量低,尺寸较小和功率低的功率,因此理想情况下,基于2D材料的电子设备应适用于外部宇宙空间的操作。这带来了它们的辐射硬度或耐受性的问题,这些问题最近在许多研究中得到了解决。这些研究的结果有些相反:尽管可以天真地期望原子上薄的结构应通过能量颗粒的光束很容易破坏,但据报道,用2D材料制成的设备表现出非凡的辐射硬度。在这篇重点文章中,给出了有关该主题的最新研究的概述,随后讨论了所报告的高耐受性的起源,这与2D材料的响应(具有降低维度性降低的系统)对辐照的响应固有相关。对辐射下2D系统行为的实验和理论数据的分析表明,尽管独立的2D材料确实可以称为辐射条件下与外层空间相对应的辐射弹性系统,但通常不是这种情况,例如,基于底物,可以强烈地影响2D材料的辐射材料和原始系统。
1. 意大利的里雅斯特大学化学与制药科学系。2. 意大利帕多瓦希望城儿科研究中心基金会。3. 卡塔尔多哈 Sidra Medicine 癌症项目。4. 瑞典斯德哥尔摩卡罗琳斯卡医学院环境医学研究所。5. 英国曼彻斯特大学化学系。6. 英国曼彻斯特大学生物、医学与健康学院纳米医学实验室。7. 美国费城宾夕法尼亚大学神经工程与治疗中心神经病学、生物工程、物理医学与康复系;美国费城 Michael J. Crescenz 退伍军人医疗中心神经创伤、神经退行性疾病与修复中心。8. 土耳其安卡拉大学生物医学工程系。 9. 安卡拉大学干细胞研究所,安卡拉,土耳其。10. 德累斯顿工业大学科学学院化学与食品化学系,德累斯顿,德国。11. 帕多瓦大学生物医学科学系,帕多瓦,意大利。
2纽约大学化学系,纽约,纽约10003,美国 *通讯作者。电子邮件:bw@tsinghua.edu.cn(B.W.); ned.seeman@nyu.edu(n.c.s.)。抽象的分支DNA基序是所有合成DNA纳米结构的基本结构元素。但是,分支方向的精确控制仍然是进一步增强整体结构秩序的关键挑战。在这项研究中,我们使用两种策略来控制分支方向。第一个基于固定的霍利迪连接,该连接在分支点上采用特定的核苷酸序列,以决定其方向。第二个策略是使用角度构造支柱在分支点上使用柔性垫片固定分支方向。我们还证明,可以通过规范的Watson-Crick碱基配对或非典型的核酶相互作用(例如I-MoTIF和G-Quadruplex)动态地实现分支方向控制。具有从化学环境的精确角度控制和反馈,这些结果将使新型的DNA纳米力学传感设备和精确有序的三维体系结构。在过去的四十年中,随着DNA纳米技术的快速发展,多功能的DNA纳米结构具有越来越增强的复杂性[1] [1]。作为分支结构基序在DNA纳米结构中无处不在,对螺旋分支的精确角度控制是关键挑战之一。相比之下,几何控制在很大程度上避开了DNA网络设计。对这些方案的拓扑控制已在很大程度上通过序列设计,螺旋时期和连接连通性的处方[2]阐明。Angle and lattice morphology is generally observed to be an emergent property of topological self-assembly—indeed the tensegrity triangle, a hallmark three-dimensional (3D) DNA lattice [3] , has three attainable internal angles, 101 º, 111 º, and 117 º, which is an apparent result of lattice stress by changing the edge length in otherwise topologically-similar structures.考虑到这一点,在现场中,获得更高的结构顺序(包括拓扑和几何特性)仍然是一个关键的挑战,可以作为实现设计师纳米材料功能的更雄心勃勃的目标的基础(例如酶促活动,刚性晶体支架,固定的晶体支架,纳米粒子阵列等)。类似于减数分裂的移动霍利迪交界处的固定的四臂连接是DNA纳米技术中最早的结构图案[2A,4]。它不仅在由无脚手架的DNA“乐高”方法构建的纳米结构中广泛使用[5],而且还使用脚手架的DNA折纸方法在不同的结构中呈现[6]。已证明分支方向由分支点序列[7]和交叉类型[8]定义,这表明了精确几何控制的机会。这种合成性指出了具有精确和动态原子布置的高阶DNA纳米结构的可行性。
芯片尺度多模光力系统具有相对于单模对应物的传感,计量和量子技术具有独特的好处。插槽模式光力晶体可实现单个光学腔的侧带分辨率和两个微波频率机械模式的大型光学机械耦合。仍然,以前的实现仅限于纳米束几何形状,在超高温度下,其有效的量子合作受到其低热电导率的限制。在这项工作中,我们设计和实验表明了二维机械 - 光学机械(MOM)平台,该平台可分散地构造出缓慢的光子引导的光子光子 - 晶波导模式和两个慢速〜7 GHz语音电线模式在物理上不同区域中定位于物理不同的区域。我们首先在长波导部分中展示了光学机械相互作用,揭示低于800 m/s的声学群速度,然后转到具有量身定制的机械频率差的模式差距绝热异质结构腔。通过光力光谱法,我们证明了光学质量因子Q〜10 5,真空磁力耦合速率,G o /2π,1.5 MHz为1.5 MHz,以及除了单模图片以外的动态反作用效应。在较大的功率和足够的激光腔内失调时,我们证明了涉及单个机械模式的再生光学振荡振荡,通过调制输入激光驱动器以其频率差的调制,将两种机械模式扩展到两种机械模式。这项工作构成了对工程MOM系统的重要进步,该系统几乎是退化的机械模式,这是混合多部分量子系统的一部分。