选择性。在 ADC 中,一旦抗体到达其靶标,受体的内化就会选择性地将结合物转运到细胞内部,最终在酸性溶酶体环境中代谢。2 a 例如,FDA 批准的酰腙(存在于 Mylotarg s 和 Besponsa s 中)在酸性环境中释放活性成分,但只能由羰基或肼衍生物制成,从而限制了仅向含有这些功能的药剂输送。13 双功能交联剂 N -乙氧基苄基咪唑 (NEBI) 已被用作可调节的 pH 敏感接头,并用于将茚并异喹啉药物或改良的 Doxo 靶向递送到癌组织(方案 1)。5 d ,14 在这种情况下,苯甲醛或咪唑部分仍留在释放的药物中。马来酰亚胺衍生物在水解转化为马来酸单酰胺后,具有近端羧酸盐基团,该基团支持酰胺水解,在酸性条件下形成苹果酸酐。15 尽管效率很高,但这种连接剂仅限于运输一级胺(方案 1)。1
摘要 尽管近几十年来针对肿瘤的纳米药物输送系统 (NDDS) 的发展呈爆炸式增长,但由于缺乏评估和预测反应的有效模型,临床转化率很低。基于微流体的肿瘤芯片 (TOC) 系统为应对这些挑战提供了一种有前途的方法。集成工程平台可以在微观层面重现复杂的体内肿瘤特征,例如肿瘤微环境、三维组织结构和动态培养条件,从而提高抗癌纳米药物评估的临床前和临床试验结果之间的相关性。本综述的具体重点是描述用于评估纳米药物的 TOC 的最新进展,根据药物输送过程分为六个部分:输注后的循环行为、内皮和基质屏障、肿瘤摄取、治疗效果、安全性和耐药性。我们还讨论了 TOC 最终用途前景的当前问题和未来方向。关键词:肿瘤芯片、微流控装置、纳米药物、药物输送过程、临床前预测
1 澳大利亚维多利亚州克莱顿,莫纳什大学生物医学发现研究所生物化学与分子生物学系 2 澳大利亚维多利亚州帕克维尔,沃尔特和伊丽莎霍尔医学研究所 3 澳大利亚堪培拉,澳大利亚国立大学约翰科廷医学研究院免疫学与传染病系 4 澳大利亚维多利亚州克莱顿,莫纳什大学生物医学发现研究所微生物学系 5 澳大利亚维多利亚州帕克维尔,墨尔本大学 Bio21 分子科学与生物技术研究所生物化学与药理学系 6 澳大利亚维多利亚州帕克维尔,墨尔本大学医学生物学系 7 澳大利亚维多利亚州普拉兰,莫纳什大学阿尔弗雷德医院与中央临床学院传染病系
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
放射治疗和化疗药物在癌症治疗中的应用已显示出明显的抗肿瘤作用,但也有局限性(由于对肿瘤细胞缺乏选择性而产生显著的副作用、产生耐药性以及发生继发性恶性肿瘤)。因此,人们大力推动替代疗法(如免疫疗法)的研究和开发,以寻找对转化细胞具有更高特异性且非特异性毒性更低的疗法。免疫疗法的优势在于其特性(识别细胞膜上的特定靶标),这些特性完全独立于化疗和放疗所基于的参数。这导致副作用的叠加和对化疗和放疗有抗性的细胞克隆的细胞毒性不受影响。今天,受埃尔利希“魔法子弹”概念的启发,最有前途的研究方法之一是将药理活性分子与载体(主要是抗体)连接起来,以便选择性地递送到靶细胞。这些杂合物主要应用于癌症治疗领域的研究 [ 1 ]。因此,大多数免疫治疗方法都集中于针对癌细胞表面的特定抗原。这种方法的一个基本要求是靶分子局限于要破坏的细胞群,或者至少靶分子不存在于干细胞或其他对生物体生存至关重要的细胞类型中。抗体是最常用的载体,因为它们在血液中稳定,并且对靶抗原具有亲和力和亲和力。许多不同的分子已被用作毒性部分;研究最多的是毒素(细菌或植物)、药物、放射性核素和人类酶。最常用的细菌毒素是假单胞菌外毒素 A (PE) [ 2 ] 和白喉毒素 (DT) [ 3 ],它们通过 NAD 依赖的延长因子 2 的 ADP 核糖基化抑制翻译,导致细胞死亡。最常用于治疗目的的植物毒素是核糖体失活蛋白 (RIP) [ 4 , 5 ],主要是蓖麻毒素 [ 6 ] 和皂草毒素 [ 7 ]。RIP 也称为多核苷酸:腺苷糖基化酶 [ 8 ],因为它们能够从许多不同的多核苷酸底物中去除腺嘌呤,通过多种机制导致细胞死亡 [ 9 – 11 ]。本期特刊汇集了五篇科学文章,重点介绍了基于抗体的毒素和其他活性分子对抗恶性细胞的知识进展,从而揭示了它们在抗癌治疗中的潜力。如上所述,识别/选择有效靶标是针对特定癌症进行免疫治疗的战略重要行动。连接蛋白细胞粘附分子 4 (NECTIN4) 是皮肤鳞状细胞癌的潜在治疗靶标,第二种最常见的皮肤癌。在大多数皮肤鳞状细胞癌研究组织和 A431 细胞系的质膜上均发现了 NECTIN4 的表达。NECTIN4 被证实在调节细胞间相互作用、皮肤鳞状细胞癌细胞的迁移和增殖中发挥作用 [12]。前列腺特异性膜抗原 (PSMA) 是一种可靠的标记物,非常适合前列腺癌 (PCa) 的成像和治疗。抗 PSMA 抗体的有效性
图 4. 纳米血小板对细菌生长的抑制。(A)纳米血小板铜带样品在暴露于细菌之前和之后。由于纳米血小板溶解到细菌培养液中,出现了可见的颜色变化。(B)样品粘附在 24 孔板的孔中。上图显示暴露于细菌之前的样品,下图显示暴露于细菌之后的样品。(C)在纳米血小板存在下大肠杆菌的生长抑制。纳米血小板几乎完全抑制了细菌生长。数值代表平均值,误差线代表标准差(对照组 n=8,治疗组 n=4)。** 表示与对照组相比具有统计学显著性,P<0.01。NS=不显著。对照样品是未经处理的细菌溶液。(D)在纳米血小板存在下 MDR 大肠杆菌的生长抑制。纳米血小板几乎完全抑制了细菌生长。数值代表平均值,误差线代表标准差(对照组 n=8,治疗组 n=4)。 ** 表示与对照组相比具有统计学显著性,P<0.01。NS=不显著。对照样品是未经处理的细菌溶液。
伪尿苷 ( Ψ ) 是哺乳动物非编码 RNA (ncRNA)(包括 rRNA、tRNA 和 snRNA)中最常见的非规范核糖核苷,占总尿苷水平的 ∼ 7%。然而,Ψ 仅占 mRNA 上尿苷的 ∼ 0.1%,其对 mRNA 功能的影响仍不清楚。研究表明,Ψ 残基会抑制宿主先天免疫因子对外源 RNA 转录物的检测,因此病毒可能通过破坏宿主伪尿苷合酶 (PUS) 将 Ψ 残基添加到 mRNA 中来抑制受感染细胞的抗病毒反应。在这里,我们描述并验证了一种新型的基于抗体的 Ψ 映射技术,即光交联辅助 Ψ 测序 (PA- Ψ -seq),并用它来映射不仅在多个细胞 RNA 上而且在 HIV-1 编码的 mRNA 和基因组 RNA 上的 Ψ 残基。我们描述了 293T 衍生细胞系,其中先前报道的人类 PUS 酶会将 Ψ 残基添加到人类 mRNA 中,特别是 PUS1、PUS7 和 TRUB1/PUS4,通过基因编辑被灭活。令人惊讶的是,虽然这使我们能够将细胞 mRNA 上的几个 Ψ 添加位点分配给这三种 PUS 酶中的每一种,但 HIV-1 转录本上的 Ψ 位点仍然不受影响。此外,PUS1、PUS7 或 TRUB1 功能的丧失并没有显著降低在人类总 mRNA 上检测到的 Ψ 残基水平(低于野生型细胞中的约 0.1% 水平),因此意味着将大量 Ψ 残基添加到人类 mRNA 中的 PUS 酶仍有待确定。
抗癌化疗已被证明会产生严重的副作用,其中蒽环类药物的心脏毒性最为显著。确定抗癌治疗引起的癌症患者心脏毒性的风险因素以及了解其潜在机制对于改善化疗治疗方案的临床结果至关重要。此外,针对抗癌治疗引起的心脏毒性的心脏保护剂很少。人类诱导多能干细胞技术为验证潜在的单核苷酸多态性提供了一个有吸引力的平台,该多态性会增加心脏毒性的风险。成功验证心脏毒性的风险因素和机制将有助于开发此类新药发现平台,并促进个性化医疗的实践。
摘要:癌症是全球主要死亡原因之一,其治疗仍然极具挑战性。癌症治疗的有效性在很大程度上取决于药物的肿瘤特异性递送。纳米粒子药物递送系统已经开发出来以避免传统化疗的副作用。然而,根据最新的建议,未来的纳米医学应主要集中在基于配体-受体识别的纳米载体的主动靶向,这可能比人类癌症治疗中的被动靶向更有效。然而,由于肿瘤微环境的复杂性,单配体纳米药物的功效仍然有限。因此,NPs 朝着额外的功能方向发展,例如 pH 敏感性(高级单靶向 NPs)。此外,还开发了在同一药物递送系统上包含两种不同类型靶向剂的双靶向纳米粒子。先进的单靶向纳米粒子和双靶向纳米载体在细胞选择性、细胞摄取和对癌细胞的细胞毒性方面表现出比传统药物、非靶向系统和没有额外功能的单靶向系统更优越的特性。叶酸和生物素被用作癌症化疗的靶向配体,因为它们可用、廉价、无毒、无免疫原性且易于修改。这些配体可用于单靶向和双靶向系统,尽管后者仍然是一种新方法。本综述介绍了用于抗癌药物输送的单靶向或双靶向纳米粒子开发的最新成果。
摘要:尽管癌症中有针对性的疗法发展了,但多药剂(MDR)的问题仍未解决。大多数转移性癌症患者死于MDR。跨膜ef泵作为MDR的主要原因,但是最突出和最长的EF泵泵P-糖蛋白(P-GP)的早期抑制剂是消除了抑制剂。这些抑制剂已被用于治疗肿瘤的P-gp表达的情况下使用。因此,在临床环境中,在各自的EF漏水泵表达的情况下,将跨膜EF泵泵的抑制剂重新考虑为有前途的策略。我们发现了由ABCC4基因编码的对称ef泵泵MRP4的新型对称抑制剂。MRP4参与了多种癌症,并且对抗癌药物有抗性。所有化合物在过表达MRP4的细胞系测定中表现出比最著名的MRP4抑制剂MK571更好的活性,并且这些活性可能与对称分子框架内的芳族残基的各种替代模式有关。最佳化合物之一被证明是在细胞系模型中克服MRP4介导的抗性,以恢复抗癌药物敏感性作为概念证明。