众所周知,腐蚀疲劳是海上结构(如海上风力涡轮机)的主要失效机制,这是由于在高度腐蚀的环境中不断施加循环载荷所致。在本研究中,首先回顾和讨论了现有的腐蚀疲劳裂纹扩展 (CFCG) 理论和模型,随后提出了一种新方法来准确描述各种载荷条件和频率下的腐蚀疲劳行为。为了检验所提出方法的有效性,对 S355G10 + M 中强度钢紧凑拉伸 C(T) 试样在不同载荷水平和频率下进行了疲劳裂纹扩展试验。最初使用传统的断裂力学参数 Δ K 分析实验数据,结果表明该参数在阐明频率对 0.2 – 0.5 Hz 范围内 CFCG 速率的影响方面存在局限性。因此,开发了一个新的断裂力学参数,可以更清楚地看到和解释这些影响。此外,使用引入的断裂力学参数开发了一种新的 CFCG 模型,用于根据空气中的短期测试数据预测海水中的裂纹扩展速率。已发现所提出的模型与本研究中的 S355G10 + M 腐蚀疲劳实验数据以及文献中提供的 S355J2 + N 结构钢数据具有很好的相关性。
基于海洋温差能转换的多能源系统 李志浩,苏嘉鹏,余晖,金安军*,王静 宁波大学航海学院,浙江省宁波市 315000 *: 通讯作者:(+86) 18600699878; ajjin at nbu.edu.cn 摘要:海洋温差能资源十分丰富,是清洁能源输出的良好条件。首先,全球海洋温差能总量约为400亿kW,而海洋温差能转换(OTEC)清洁可再生,发电稳定,储能能力强,积极开发利用海洋温差能资源对实现海洋强国战略具有重要意义。其次,针对传统OTEC的效率限制,作者提出了一种基于OTEC的多能互补系统来提高系统效率。该方法将太阳能、风能和储能集成到一个互补的OTEC系统中,该互补系统在系统级设置参数。例如,设计了一个1MW的集成发电系统,并通过计算理论模型,利用计算机辅助设计与仿真对该系统进行了研究。太阳能互补供热的OTEC系统的效率可达12.8%,综合效率可达18.6%。此外,OTEC还有许多有益的副产品,被认为对生态系统有益。最后,本文分析了该方法的基本原理和工作过程,并计算了系统效率。结果表明,与传统OTEC相比,互补系统可以提高发电输出效率、稳定性和海洋能利用率。关键词:海洋温差能转换,多能互补,太阳能互补供热,开式循环OTEC1.引言当今世界,能源消耗迅速增加,化石能源日益减少,环境污染和温室效应越来越严重地影响着我们的日常生活。因此,可再生能源对改变能源基础设施,维持人类能源利用的长远发展发挥着重要作用。据统计,赤道以南24°以南1000m处水温约为4℃,海面水温约为30℃,深海与海面温差蕴藏的能量约为10 13 W(Song,2019),海洋温差年发电潜力约为87600TWh,而全球每年的用电量约为16000TWh(Khan et al,2017)。而且海洋能可再生、稳定、清洁、无污染,具有很高的开发利用价值,浩瀚的海洋能资源对全球而言是一笔巨大的资源。海洋热能转换(OTEC)系统通过驱动暖海水和冷深海水之间的热力学卡诺热机来发电。OTEC系统的概念是一种具有百年历史的先进绿色能源技术。历史上众所周知,海洋资源具有巨大的经济价值(Torgeir 2019;Cheng 2019)。在某些情况下,大气沉降
在造船厂中,您可以找到:•港口盆地或造船厂是港口或造船厂的水位区域,通常具有狭窄的矩形形状,并带有船只停靠的混凝土码头。•码头(或码头)是一个结构(主要是混凝土),在港口的海岸上,该区域适合建造,码头和处理船只•码头是用于建造,检查和维修船舶的造船厂中的建筑,可以有干码头或浮雕(干燥)docks。该信件可用于维修或检查船体的船体•船体装配区 - 它是造船厂(大厅)的一部分,在该部分中建造了更大的船体元素(甚至整个部分)。接下来,它们将其固定在滑道或干码头上的完整船体中。•研讨会 - 例如电动,焊接,管道绘画商店•模具阁楼 - 一个大厅,有一个大地块区域,在实际尺寸的船只设计中,该船只被复制。
随着传统工业的发展和新兴工业的出现,人类对世界海洋的探索也日益加深。一个新兴且快速增长的产业是海洋可再生能源。过去几十年来,能够将溪水、波浪、风和潮汐中所含能量进行转化的技术发展速度加快。这种增长得益于社会对我们所处环境的福祉的明显认识。这使人类渴望实施能够更好地应对自然环境的技术。然而,这种环境意识也可能给新的可再生能源项目的批准带来困难,如海上风电、波浪和潮汐能发电场。从中吸取的教训是,在批准测试和部署海洋可再生能源技术的许可时,缺乏一致的环境数据可能会成为僵局。例如,欧盟的大多数成员国都要求在海洋可再生能源技术投入使用和退役时实施严格的环境监测计划。为了满足如此高的要求,同时促进海洋可再生能源行业的发展,需要建立收集多变量数据的长期环境监测框架,以持续向技术开发商、运营商以及公众提供数据。基于主动声学的技术可能是最