高 I/O 密度和绿色材料是倒装芯片和 3D IC 封装用封装基板的两大主要驱动力。未来的有机层压基板将需要 5-25 µ m 的线宽和间距以及 50-100 µ m 的封装通孔 (TPV) 间距。这种超细间距要求将因电化学迁移和导电阳极丝 (CAF) 而导致严重的基板故障。因此,有必要开发新型无卤材料并研究其在超细间距应用中的可靠性。这项工作主要集中在四个领域:1) 先进的无卤材料,2) 细线宽和间距中的表面绝缘电阻 (SIR),3) 细间距 TPV 中的导电阳极丝 (CAF),以及 4) 倒装芯片互连可靠性。本研究选择的基板材料包括在聚合物主链上加入无卤阻燃剂的树脂配方。在具有 50 µm 间距铜线的基板上研究了 SIR,并在具有 150 µm 和 400 µm 间距 TPV 的基板上研究了 CAF。在这两项测试中,都观察到无卤基板与溴化 FR-4 相比表现出更好的电化学迁移阻力。通过对测试基板进行热循环测试 (TCT)、无偏高加速应力测试 (U-HAST) 和高温存储 (HTS) 测试来研究倒装芯片可靠性。在每次可靠性测试后都进行扫描声学显微镜 (C-SAM) 分析和电阻测量。测试基板分别通过了 200 小时的 HTS、96 小时的 HAST 和 2000 次 TCT 循环。倒装芯片可靠性结果表明,这些材料有可能取代传统的卤化基板用于高密度封装应用。关键词:无卤素基板、表面绝缘电阻、导电阳极丝、倒装芯片可靠性 简介 电子产品向无卤素材料的转变始于 1994 年德国通过的《二恶英法》。从那时起,欧盟 (EU) 制定的生态标签成为印刷线路板采用无卤素材料的驱动力。卤素通常添加到 PWB 中使用的聚合物玻璃复合材料中以达到阻燃效果。然而,卤素材料在特定的燃烧条件下会形成多溴二苯并二恶英 (PBDD) 和多溴二苯并呋喃 (PBDF),这会对环境和健康造成严重风险。在这方面,无卤材料比卤素材料优越得多,并且在回收过程中也很有用 [1]。印刷电路板研究所