摘要:通常认为开放壳分子石墨烯片段的反应被认为是不希望的分解过程,因为它们导致诸如π-磁性等所需特征的丧失。氧化二聚二聚体表明,这些转化是通过在单个步骤中形成多个键和环制造复杂结构的合成结构的希望。在这里,我们探讨了使用Phena-lenyyl的这种“不希望”反应来构建应变并提供非平面多环芳烃的可行性。为此,我们设计并合成了一个双烯基单元通过双苯基骨架链接的Biradical系统。设计促进了分子内级联反应对螺旋扭曲的鞍形产物,其中一个反应中的关键转换(环锁和环形融合)在一个反应中。通过单晶X射线衍射分析证实了最终的绿吡就产物的负曲率,该植物诱导的曲率通过分辨率通过分辨率的映异构体验证,该螺旋扭转验证了螺旋扭曲,这些向映异构体显示圆形极化的发光和高构型稳定性。
智能手机等手持设备的出现改变了我们连接、导航和娱乐的方式,被认为是信息和通信技术 (ICT) 的一场革命。智能手机是移动电话的高级版本,可以访问互联网以发送消息、使用社交媒体、观看视频和玩游戏。如今,智能手机在日常生活中无处不在,全球用户超过 25 亿 [1]。这个口袋大小的信息库有诸多有益用途,包括提高工作效率(例如电子邮件、消息和日历)[2]、社会支持和社交互动(例如社交媒体)、信息搜索(例如网页浏览功能)、促进健康(例如体育锻炼)[3]、体重控制 [4, 5]、肥胖治疗 [6] 和通信,以及 GPS 导航和娱乐,但人们开始担心上瘾使用会产生意想不到的后果,影响生活质量和幸福感。
进化塑造了个别物种的感觉能力和能力。在啮齿动物中,主要居住在黑暗的隧道和洞穴中的啮齿动物中,基于晶须的体感系统已发展为主要的感觉方式,对于环境探索和空间导航至关重要。相比之下,在日常生活中从周围的感觉空间收集信息时,人类更多地依赖于视觉和听觉输入。由于这种物种特定的感觉优势,认知相关性和能力的差异,跨物种类似的感觉认知机制的证据仍然很少。然而,最近对啮齿动物和人类的研究产生了令人惊讶的可比处理规则,用于检测触觉刺激,将触摸信息融入感知和目标指导的规则学习。在这里,我们回顾了跨物种的大脑如何利用此类处理规则在触觉学习过程中建立决策,遵循丘脑的规范电路和主要的体体皮质到额叶皮层。我们讨论了啮齿动物中微观和介镜研究的经验证据和计算证据之间的一致性,以及人类宏观成像的发现。此外,我们讨论了未来跨物种研究的相关性和挑战,以解决基于知觉学习的相互依赖于上下文的评估过程。