2005年,慢曲霉作为烟曲霉的一个隐种被首次报道,此后,其对唑类药物的耐药性和感染者的高死亡率就成为问题。尽管据报道P450 14-α固醇脱甲基酶(Cyp51)与慢曲霉的唑类抗性有关,但具体的抗药机制尚不清楚。在本研究中,我们利用CRISPR/Cas9基因组编辑系统成功地将整个烟曲霉cyp51A基因引入到慢曲霉的cyp51A基因座中。与亲本菌株相比,含有烟曲霉cyp51A的慢曲霉菌株对伊曲康唑和伏立康唑的最低抑菌浓度降低。这一发现表明 Cyp51A 与 A. lentulus 的唑类抗性有关,可能有助于阐明 Cyp51A 对唑类药物产生抗性的机制,并有助于开发新的抗真菌药物。此外,我们成功地将 CRISPR/Cas9 系统应用于 A. lentulus,为研究这种真菌中其他基因的功能打开了大门。关键词:Aspergillus lentulus、唑类抗性、Cas9/CRISPR、Cyp51A
对于四倍体柳枝稷,我们将单倍体定义为两个亚基因组的基因组拷贝丢失。双单倍体技术需要有效的 2n 诱导系统以及随后的基因组加倍,并将提供新的育种机会,例如为商业杂交生产系统选择高性能自交系。不同柳枝稷亚种群的杂合亲本之间的杂交可产生生物量产量的杂种优势(Bhandari 等人,2017 年;Martinez-Reyna 和 Vogel,2008 年;Vogel 和 Mitchell,2008 年)。然而,由于柳枝稷中活跃的遗传不相容系统以及在获得的相对较少的自交基因型中可能发生的近交衰退和不育,自交系尚未开发。如果有更好的自交系,开发高产单交杂交种将是一种可选的育种方法。由于自交系的性能通常与其杂交种的性能相关,因此选择高产自交系可能具有优势(Hayes & Johnson,1939;Sprague,1977)。此外,DH 技术将促进所需性状、外来基因、转基因、染色体片段或整个染色体的渗入和稳定(Devaux & Pickering,2005;Forster & Thomas,2005)。
为了进一步开发组合概念,我们利用 Sutro 的突破性 XpressCF+® 无细胞技术,该技术利用精确的位点特异性结合来生成复杂分子,以设计免疫刺激性 ADC (iADC),这是一种将肿瘤靶向细胞杀伤和免疫激活结合在单一模式中的下一代 ADC 分子。使用经过设计以表达人类 FolRa 的小鼠 MC38 肿瘤,我们证明,与单独使用任何一种方式相比,使用半胱氨酸/TLR 激动剂双结合抗 FolRα iADC 可产生更强大的抗肿瘤反应。这种改善的反应与先天免疫细胞激活和肿瘤中 CD8 + T 细胞浸润增加有关。此外,在使用抗 FolRα iADC 治疗后还观察到了更多完全反应,完全反应者形成了广泛而强大的免疫记忆,能够以 CD8 + T 细胞依赖的方式拒绝 MC38-hFolRα 再挑战和亲本 MC38 再挑战。因此,iADC 概念将两种互补的肿瘤控制机制结合在单个分子中,以获得更大的治疗效益。
背景:细胞间融合正在成为各种癌症类型转移过程的关键要素。我们最近发现,由恶性前期(IMR90 E6E7,即 E6E7)和恶性(IMR90 E6E7 RST,即 RST)间充质细胞自发融合而产生的杂交体重现了人类未分化多形性肉瘤 (UPS) 的主要特征,具有高度重排的基因组和增强的扩散能力。为了更好地描述这些杂交体的内在特性,我们在此研究了它们与亲本相比的代谢能量特征。结果:我们的研究结果表明,杂交体具有类似瓦尔堡的代谢,就像它们的 RST 对应物一样。然而,杂交体表现出更大的代谢活性,增强了糖酵解以增殖。有趣的是,通过使用 5-氨基咪唑-4-羧酰胺-1- β -D-呋喃核苷 (AICAR)(一种 5 ′-腺苷酸 (AMP) 活化蛋白激酶 (AMPK) 的激活剂)改变代谢环境条件,特异性地降低了杂交瘤的生长,并且还消除了表现出增强糖酵解的杂交瘤的侵袭能力。此外,AICAR 可有效阻断与人类 UPS 细胞系侵袭性相关的肿瘤特征。
尽管天堂鸟在形态、行为和求偶策略上存在很大差异,但它们偶尔也会杂交,甚至跨属杂交。许多这样的天堂鸟杂交种最初是根据与已知物种相比的巨大形态差异而被描述为不同物种的。如今,这些标本一般根据形态评估而被认定为杂交种。几个世纪以来,天堂鸟的杂交标本一直让博物学家着迷,它们被收集起来并保存在自然历史收藏中。在本研究中,我们在博物馆组学框架中利用这一宝贵资源,评估了大多数已描述的属间杂交种和一些属内杂交种的基因组组成。我们发现,大多数被研究的标本是第一代杂交种,而且在大多数情况下,亲本种类与之前的形态学评估相符。我们还发现了两个由不同属间基因渗入杂交产生的标本。此外,两个标本表现出杂交形态,但没有可识别的杂交信号,这可能表明少量的基因渗入可能产生很大的形态效应。我们的研究结果为自然界中天堂鸟属间同时发生的基因渗入杂交提供了直接证据,尽管它们的形态和求偶场交配行为存在显著差异。
慢性骨髓性白血病(CML)是一种以BCR-ABL癌基因为特征的髓增生性疾病。尽管用酪氨酸激酶抑制剂(TKI)进行了高度治疗,但约有30%的患者对该治疗产生了抵抗力。要改善外部,需要确定新的治疗目标。在这里,我们探索了酪蛋白激酶2(CK2),作为CML治疗的潜在靶标。以前,我们在未反应tkis imatinib和dasatinib的患者中检测到Hsp90β丝氨酸226的磷酸化增加。该位点被CK2磷酸化,这也与CML对伊马替尼的抗性有关。在目前的工作中,我们建立了六个新型的伊马替尼和dasatinib-耐药的CML细胞系,所有这些细胞系都增加了CK2激活。A CK2抑制剂CX-4945,诱导亲本和抗性细胞系中CML细胞的细胞死亡。在某些情况下,CK2抑制也增强了TKI对细胞代谢活性的影响。在健康供体的正常单核血细胞和BCR-ABL负HL60细胞系中未观察到CK2抑制作用。我们的数据表明,即使在具有不同机制的TKI机制的细胞中,CK2激酶也支持CML细胞的生存能力,因此代表了潜在的治疗靶标。
印记的 Dlk1-Dio3 结构域包含发育基因 Dlk1 和 Rtl1,它们在不同类型的细胞中在母体染色体上处于沉默状态。在此亲本染色体上,该结构域的印记控制区激活多顺反子,产生 lncRNA Meg3 和许多 miRNA(Mirg)和 C/D-box snoRNA(Rian)。尽管 Meg3 lncRNA 位于核内并与母体染色体相关,但它是否控制顺式基因抑制尚不清楚。我们创建了携带异位 poly(A) 信号的小鼠胚胎干细胞 (mESC),从而降低了多顺反子上的 RNA 水平,并生成了 Rian-/- mESC。在 ESC 分化后,我们发现 Meg3 lncRNA(而不是 Rian)是母体染色体上 Dlk1 抑制所必需的。通过 CRISPR 介导的父系 Meg3 启动子去甲基化获得的双等位基因 Meg3 表达导致双等位基因 Dlk1 抑制,并导致 Rtl1 表达丧失。lncRNA 表达还与 Meg3 5' 侧的 DNA 低甲基化和 CTCF 结合相关。使用 Capture Hi-C,我们发现这会产生拓扑关联域 (TAD) 组织,使 Meg3 靠近母系染色体上的 Dlk1。Meg3 对基因抑制和 TAD 结构的需要可能解释了人类 DLK1-DIO3 基因座处异常的 MEG3 表达如何与印记障碍相关。
摘要:小麦的 α -麦胶蛋白与其他面筋成分一起决定了面包的粘弹性。然而,它们也与人类病理有关,如乳糜泻或非乳糜泻小麦敏感性。CRISPR/Cas 已成功用于敲除面包小麦和硬粒小麦中的 α -麦胶蛋白基因,从而获得低筋小麦品系。尽管如此,这些基因的突变分析很复杂,因为它们在 A、B 和 D 亚基因组中呈现多个高度同源的拷贝串联排列。在这项工作中,我们提出了一种基于 NGS 扩增子测序的生物信息学流程,用于分析两个单向导 RNA (sgRNA) 靶向的 α -麦胶蛋白基因中的插入和缺失 (InDels)。通过与最相似的野生型亲本序列进行比较,该方法可以识别突变的扩增子并分析 InDels。对样本间比较进行了 TMM 标准化;能够研究各代中每个 InDel 的丰度,并观察 Cas9 编码序列在不同细胞系中分离的影响。该工作流程的实用性与识别可能的基因组重排(例如由于 Cas9 切割活性而导致的大量缺失)有关。该流程能够快速表征多拷贝基因家族中多个样本的突变。
在胚胎中混合母本和父本基因组不仅是有性生殖进化成功的原因,也是植物育种的基石。然而,一旦获得了有趣的基因组合,进一步的基因混合就会出现问题。为了快速固定遗传信息,可以生产双单倍体植物:允许仅具有来自一个亲本的遗传信息的单倍体胚胎发育,染色体加倍产生完全纯合的植物。双单倍体生产的有效途径是基于单倍体诱导系。单倍体诱导系与具有待固定基因组合的系之间的简单杂交将触发单倍体胚胎发育。然而,植物体内单倍体诱导的确切机制仍然是一个长期未解之谜。最近发现的触发玉米作物和模式植物拟南芥单倍体诱导的分子因子明确了与配子发育、配子相互作用和基因组稳定性相关的过程的重要作用。这些发现使得单倍体诱导能力能够应用于其他作物,并利用单倍体诱导物系将基因组编辑机制引入各种作物品种。这些最新进展不仅为下一代植物育种策略带来了希望,而且还为植物有性生殖的基本基础提供了更深入的见解。
摘要 印记的 Dlk1-Dio3 结构域包含发育基因 Dlk1 和 Rtl1 ,它们在不同细胞类型的母体染色体上处于沉默状态。在该亲本染色体上,该结构域的印记控制区激活多顺反子,从而产生 lncRNA Meg3 和许多 miRNA( Mirg )和 C / D-box snoRNA( Rian )。尽管 Meg3 lncRNA 位于核内并与母体染色体相关,但它是否控制顺式基因抑制尚不清楚。我们创建了携带异位 poly(A) 信号的小鼠胚胎干细胞 (mESC),从而降低了多顺反子上的 RNA 水平,并产生了 Rian − / − mESC。在 ESC 分化后,我们发现 Meg3 lncRNA(而不是 Rian )是母体染色体上 Dlk1 抑制所必需的。通过 CRISPR 介导的父系 Meg3 启动子去甲基化获得的双等位基因 Meg3 表达导致双等位基因 Dlk1 抑制,并导致 Rtl1 表达丧失。lncRNA 表达还与 Meg3 5′ 侧的 DNA 低甲基化和 CTCF 结合相关。使用 Capture Hi-C,我们发现这会产生拓扑关联域 (TAD) 组织,使 Meg3 靠近母系染色体上的 Dlk1。Meg3 对基因抑制和 TAD 结构的需要可能解释了人类 DLK1-DIO3 基因座处异常的 MEG3 表达如何与印记障碍相关。