1976 年,当时世界上速度最快的超级计算机 Cray-1 上线,每秒可进行 1.6 亿次计算。通过 Cray-1,研究人员获得了新的能力来模拟天气模式、飞行空气动力学以及我们自然界的其他复杂系统。近 40 年后,在新加坡,一群计算机科学研究所和国家机构联合起来,推出了该国第一台千万亿次级超级计算机 ASPIRE 1。它提供一万亿台 Cray-1 机器的计算能力,将帮助 A*STAR 及其他机构的研究人员应对新世纪的科学挑战,从气候变化到全球流行病。在我们的封面故事《千万亿次级推动(第 08 页)》中,A*STAR 研究回顾了新加坡国家超级计算中心在国家研发界普及超级计算能力的使命,以及其七年历史上的关键研究合作,
本研究得到了百亿亿次计算项目 (17-SC-20-SC) 的支持,该项目是美国能源部科学办公室和国家核安全局的联合项目,负责提供一个强大的百亿亿次生态系统,包括软件、应用程序和硬件技术,以支持美国百亿亿次计算的需求。这项工作得到了劳伦斯伯克利国家实验室实验室指导研究与开发计划的支持,美国能源部合同编号为 DE-AC02-05CH11231。本研究使用了橡树岭领导计算设施的资源,该设施是美国能源部科学办公室用户设施,由合同 DE-AC05-00OR22725 提供支持,国家能源研究科学计算中心 (NERSC) 是美国能源部科学办公室用户设施,位于劳伦斯伯克利国家实验室,根据合同编号 DE-AC02-05CH11231 运营,使用 NERSC 奖项 ASCR-ERCAP0022112。本工作利用了日本理化学研究所通过 HPCI 系统研究项目(项目编号:ra010013)提供的超级计算机 Fugaku 的计算资源
摘要:能源百亿亿次地球系统模型 (E3SM) 项目是由美国能源部 (DOE) 开发的一项正在进行的、最先进的地球系统建模、模拟和预测项目。由于重点支持 DOE 的能源使命,了解和量化该模型模拟水循环过程的效果尤为重要。在这里,我们评估了 E3SM 1.0 版 (v1.0) 表示大气河流 (AR) 的能力,大气河流在水蒸气输送和降水中发挥着重要作用。将标准分辨率 (1 ◦ × 1 ◦ ) 下 E3SM 中与全球 AR 相关的特征和降水与现代时代回顾性研究和应用分析第 2 版 (MERRA2) 进行了比较。 E3SM 中的 AR 频率全球模式与 MERRA2 具有高度相关度(≥ 0.97),且年度、季度和不同集合成员之间的平均绝对误差(MAE;< 1%)较低。然而,存在一些大尺度条件偏差,导致 AR 偏差——其中最显著的是双热带辐合带 (ITCZ)、北半球和南半球冬季更强和/或向赤道方向移动的副热带急流,以及夏季北半球西风增强。通过比较仅大气和完全耦合的模拟,我们将偏差的来源归因于大气成分或耦合响应。使用 Dong 等人揭示的关系。 (2021),我们提供了证据表明,冬季北太平洋急流增强,夏季北半球西风增强,分别与E3SM的双ITCZ和相关的较弱的大西洋经向翻转环流(AMOC)有关,
在这项研究中,HPC 驱动的癌症研究为长期癌症幸存者带来了更好的结果。癌症检测和治疗方面的进步大大提高了存活率。但随着存活率的提高,需要尽量减少长期治疗相关的负面影响。特别是,接受放射治疗的儿童以后更容易患上由放射引起的继发性癌症(致癌作用)。研究人员在超级计算机模拟的帮助下进行了临床试验,这些试验有助于提高长期晚期癌症治疗的成功率。模拟驱动的研究产生了宝贵的数据,这些数据被用于指导临床和卫生政策决策
1 加利福尼亚大学地理系,美国加利福尼亚州伯克利市 2 太平洋西北国家实验室,美国华盛顿州里奇兰市 3 加利福尼亚大学区域地球系统科学与工程联合研究所,美国加利福尼亚州洛杉矶市 4 加州理工学院喷气推进实验室,美国加利福尼亚州帕萨迪纳市
摘要。由于光谱波模型计算成本高昂,风浪过程通常被排除在耦合地球系统模型之外,该模型需要解决空间和时间上波的频率和方向谱。地球系统模型中使用的现有均匀分辨率波浪建模方法无法恰当地表示从全球到沿海海洋尺度的波浪气候,这主要是因为沿海分辨率和计算成本之间的权衡。为了解决这一挑战,我们为 WAVEWATCH III (WW3) 模型引入了全球非结构化网格功能,该模型适合与美国能源部的能源百亿亿次地球系统模型 (E3SM) 耦合。新的非结构化 WW3 全球波浪建模方法可以在沿海地区提供更高的全球分辨率精度,但相对而言,均匀全球分辨率较低。这种新功能可以根据沿海应用的需要模拟物理相关尺度的波浪。
人口增长和气候变化加速要求使用设计作物理想型(可以在特定环境中生长的理想化植物)进行农业改良。多样化和高技能的研究小组必须整合努力,以弥合实现可持续农业国际目标所需的差距。鉴于全球农业需求的规模以及优化这些努力所需的多种组学数据,可解释的人工智能(具有可解释的决策过程的人工智能,可为人类提供有意义的解释)和百亿亿次计算(每秒可执行 10 18 次浮点运算或百亿亿次浮点运算的计算机)至关重要。准确的表型分析和每日分辨率的气候类型关联对于在不同粒度级别上将理想型生产细化到特定环境同样重要。我们回顾了朝着可持续农业方向的进展克服技术障碍,解决多项联合国可持续发展目标,并讨论克服研究与政策之间差距的愿景。
1. 简介 ASCAC 百亿亿次计算小组委员会的这份报告旨在涵盖“迈向百亿亿次级”所引发的主要问题,并就追求(以及不追求)这一高性能计算方向所涉及的风险水平提供一些指导。2“迈向百亿亿次级”将意味着计算架构的彻底改变 - 基本上,大大提高并行性水平,达到数百万个处理器协同工作的程度 - 这将迫使硬件设计方式发生根本性变化(至少受功耗的经济限制所驱动),我们解决问题的方式(例如应用程序代码),以及我们如何将应用程序代码与底层硬件(例如编译器、I/O、中间件和相关软件工具)结合起来。要了解进入百亿亿次级计算的优势,并评估走这条路所涉及的风险,既需要评估过去从百万次浮点计算时代过渡到现在千万亿次浮点计算时代的经验,也需要评估高级应用程序是否已准备好利用百亿亿次级计算的变革优势。这些是我们在报告 3 中讨论的问题,与能源部赞助的、高度详细的、以学科为导向的“大挑战研讨会”报告(见附录 2)相比,报告的讨论更为笼统,而我们的许多讨论都是基于该报告。
为此,ORNL、劳伦斯伯克利国家实验室和洛斯阿拉莫斯国家实验室 (LANL) 成立了混合多核联盟。这些实验室已投入大量资金部署基于当前和新兴加速器技术的计算平台,这些平台可加快它们为科学界提供的领先大规模计算资源的处理速度。佐治亚理工学院和瑞士联邦理工学院等以混合多核架构和软件研究而闻名的大学也是该团队的一部分。虽然混合多核技术在未来的高端计算系统中将发挥重要作用,但大多数应用程序都需要进行大量重新设计才能利用这些系统。该联盟将解决应用程序向混合系统的迁移问题,以最大限度地提高投资回报。