多年来,计算主义认知科学家在心智描述中运用表征和有效因的概念,而以动态系统为导向的生态心理学家则摒弃表征主义和有效因,转而主张多尺度、偶然相互作用和具身化。本文介绍了一种最近发展起来的具身化理论——野生系统理论 (WST),该理论就是为克服这种矛盾而开发的。WST 将生物体概念化为它们出现并维持自身的系统发育、文化、社会和发展背景的多尺度自我维持的具身化。这种自我维持的背景具身化自然且必然与它们所体现的多尺度背景有关。因此,意义(即内容)是它们的构成要素。这种内容方法克服了计算主义对表征的需求,同时满足了生态对多尺度偶然相互作用的偏好。
视觉识别生态系统(例如 ImageNet、Pascal、COCO)在现代计算机视觉的发展中发挥了不可否认的作用。我们认为,在这些生态系统出现之前,交互式和具身视觉 AI 已经达到了与视觉识别类似的发展阶段。最近,各种合成环境已被引入以促进具身 AI 的研究。尽管取得了这些进展,但在模拟中训练的模型如何很好地推广到现实这个关键问题仍然基本上没有答案。为模拟到现实的具身 AI 创建一个可比的生态系统提出了许多挑战:(1)问题固有的交互性,(2)现实世界和模拟世界之间需要紧密结合,(3)复制可重复实验的物理条件的难度,(4)以及相关成本。在本文中,我们引入了 R OBO THOR 来使交互式和具身视觉 AI 的研究民主化。 R OBO THOR 提供模拟环境框架
摘要 研究人员越来越多地探索为健全用户部署脑机接口 (BCI),其动机是比现有的身体介导交互更直接地访问心理状态。这种动机似乎与长期以来 HCI 对具身化的强调相矛盾,即普遍认为身体对认知至关重要。本文通过回顾具身认知和交互的见解来解决这一明显的矛盾。我们首先批判性地审视最近对 BCI 的兴趣,并确定大脑认知与更广泛的身体整合的程度是研究的核心关注点。然后,我们定义了综合认知观点对界面设计和评估的影响。我们得出的一个违反直觉的结论是,具身化本身不应该意味着比 BCI 更倾向于身体介导的交互。相反,它可以通过以下方式指导研究:1) 为 BCI 性能提供基于身体的解释,2) 提出在认知模块化观点中被忽视的评估考虑因素,以及 3) 通过将其设计见解直接转移到 BCI。最后,我们反思了 HCI 对具身化的理解,并确定了迄今为止被忽视的具身化的神经维度。
Evans, L. (2018)。虚拟现实的重新出现。劳特利奇。Farman, J.(2020)。移动界面理论:具身空间和定位媒体。劳特利奇。Featherstone, M.,& Burrows, R. (1996)。网络空间/赛博体/赛博朋克:技术具身文化。SAGE。Fox, J.、Bailenson, J. N.,& Tricase, L. (2013)。性化虚拟自我的具身化:普罗透斯效应和经验
WSDY06A1Y2N 产品是单节锂离子 / 锂聚合物可充 电电池组保护的高集成度解决方案。 WSDY06A1Y2N 包括了先进的功率 MOSFET ,高精 度的电压检测电路和延时电路。 WSDY06A1Y2N 具有非常小的 SOT-23-5L 封装, 这使得该器件非常适合应用于空间限制得非常小的 可充电电池组应用。 WSDY06A1Y2N 具有过充、过放、过流、短路等所 有电池需要的保护功能,并且工作时功耗非常低。 WSDY06A1Y2N 不仅仅为穿戴设备而设计,也适用 于一切需要锂离子或锂聚合物可充电电池长时间供 电的各种信息产品的应用场合。
・JIS标准B3尺寸,纵向或横向,自由纸质,仅限于未发表的原创作品。 - 可以自由地使用颜料(水彩、油画、丙烯等)、粉彩、数码插图、CG 等来表达您的作品。但这仅适用于平面。
“还有很多其他问题会导致事故,”Mike Gelskey 说。“而且通常不只是一件事,而是许多因素共同导致了灾难。可能是对负载重量计算不当,加上使用损坏的索具。或者负载低于重心,吊索数量不足,或者挂钩配置不当,再加上强风,导致负载移动并滚出索具。
摘要:本研究提出了一种创新方法,该方法基于低成本红外热成像 (IRT) 仪器的使用,以实时评估脊柱侧弯支具的有效性。确定脊柱侧弯支具的有效性意味着决定支具对患者背部施加的压力是否足以达到预期的治疗目的。传统上,支具有效性的评估依赖于骨科医生在常规随访检查中进行的经验性定性评估。因此,它在很大程度上取决于相关骨科医生的专业知识。在现有技术中,用于确认骨科医生意见的唯一客观方法是基于对脊柱侧弯随时间进展情况的评估,这通常会使人们暴露在电离辐射下。为了解决这些局限性,本研究提出的方法旨在以无害的方式实时、客观地评估脊柱侧弯支具的有效性。这是通过利用热弹效应并将患者背部的温度变化与支架施加的机械压力相关联来实现的。基于此方法的系统已实施,并通过在一家经认可的骨科中心对 21 名患者进行的实验研究进行了验证。实验结果表明,在区分充足和不足压力方面,分类准确率略低于 70%,鉴于此类系统在骨科中心的临床应用,这是一个令人鼓舞的结果,有望进一步推进。
前言 6 致谢 6 1.0 简介 7 2.0 本技术指南中使用的关键术语和定义 9 2.1 术语和定义 10 2.2 如何在树艺中使用 kN 值 11 3.0 规划索具操作 13 3.1 简介 14 3.2 风险评估 15 3.3 规划 15 3.4 角色和职责 18 3.5 操作员能力 18 3.6 场地布局 20 3.7 树木状况评估 21 4.0 索具技术 25 4.1 简介 26 4.2 索具点在上方 28 4.3 索具点在下方 32 4.4 其他索具方案 36 4.5 辅助拆除技术 40 4.6 预加载线 41 4.7 机械优势 (MA) 42 5.0锚固力 45 5.1 简介 46 5.2 摩擦力 46 5.3 矢量 47 5.4 锚固力随绳索角度变化 47 5.5 重定向 48 6.0 操作员定位 51 6.1 概述 52 6.2 切割技术 53 7.0 系统组件 57 7.1 概述 58 7.2 硬件组件 59 7.3 纺织组件 59 7.4 模块化组件 59 7.5 连接器 59 7.6 组件类型摘要 60