_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
这项研究利用密度功能理论(DFT)来探索BN掺杂的准四膜堆积(QTP)C 60 C6 60聚合物纳米片的结构稳定性,电子特性,吸附行为,光学特征和氢进化反应(HER)活性。吸附研究表明,与BN掺杂相比,与CO 2和N 2相比,H 2 O分子的亲和力明显更高,强调了湿度在调节气体感应响应中的关键作用。这与对新型非金属2D接口对水相互作用的有限原子规模的了解有限。Bader电荷传输分析和吸附能量计算进一步验证了H 2 O(+0.056 E)的增强吸附,从而诱导了0.5至1.2 eV的显着带隙修改。光学研究表明,可见光谱中的光吸收得到了改善,这表明了材料的光电和光催化应用的潜力。她的活性评估表明,BN掺杂降低了氢进化的过电势,从而提高了催化效率。总体而言,BN掺杂的QTP C 60纳米片具有较高的气体选择性,提高光学特性和改善的催化性能,使它们成为温室气体捕获,湿度感应和可持续能源应用的有希望的候选者。
最初发表于以下网址:毛罗(Schilling),毛罗(Mauro); Cunha,Richard A;桑德拉(2020)卢伯(Luber)。放大O – O键形成 - 采用增强的采样技术的基本分子动力学研究。化学理论与计算杂志,16(4):2436-2449。doi:https://doi.org/10.1021/acs.jctc.9b01207
1 MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China 2 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China 3 Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface物理和物理系,福丹大学,上海,200433年,中国4物理学系和纳米科学与工程研究所,阿肯色大学,阿肯色大学,阿肯色州72701,美国5大学,美国5级大学,巴黎大学 - 萨克莱大学,中心,中心zjjiang@xjtu.edu.cn†charles.paillard@centralesupelec.fr Electro-Optic(EO)效应效果将光学常数的变化与低频电场有关。多亏了密度功能扰动理论的出现(DFPT),现在可以以AB-Initio方式计算大量三维(3D)材料的EO特性。然而,在大多数密度功能理论中使用周期性边界条件施加了使用大量真空包围的平板模拟二维(2D)材料。从此类计算中预测的EO系数(即使不正确)可能会严重偏离2D材料的实际EO特性。目前的工作讨论了问题,并介绍了恢复关系,从而恢复了真正的EO属性。I.简介
量子纳米结构在电子,光子学,材料,药物等方面提供了重要应用。为了精确设计和分析纳米结构和材料,始终需要对Schrӧdinger或Schrӧdinger样方程进行模拟。对于大纳米结构,这些特征值问题在计算上可能是密集的。一种有效的解决方案是通过正交分解(POD)的学习方法,以及Schrӧdinger方程的Galerkin投影。pod-galerkin将问题投射到降低的空间上,其POD基础代表由模拟中的第一个原理引导的电子波函数(WFS)。为了最大程度地减少训练工作并增强Pod-galerkin在较大结构中的鲁棒性,先前提出了量子元素方法(QEM),该方法将纳米结构划分为通用量子元素。较大的纳米结构可以通过受过训练的通用量子元素构造,每个元素用其POD-Galerkin模型表示。这项工作对QEM-Galerkin进行了多元素量子点(QD)结构的彻底研究,以进一步提高QEM-Galerkin的训练效率和仿真精度和效率。为了进一步提高计算速度,在QEM-Galerkin模拟中还检查了定期电势的POD和傅立叶基础。结果表明,考虑到效率和准确性,POD电位基础甚至在周期性潜力方面都优于傅立叶电位基础。总的来说,Qem-Galerkin在计算中提供了多个元素QD结构的直接数值模拟的2阶速度,并且在包含更多元素的结构中观察到了更多改进。
2目录5 2.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.1.1本文档的范围。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.1.2什么是起搏器?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.2.1安装Almalinux 9。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 10 2.2.2配置OS。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。10 2.2.1安装Almalinux 9。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.2.2配置OS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>21 2.2.3重复第二个音符。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 2.2.4在节点之间配置通信。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 2.3设置并群集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 2.3.1简单的使用和群集外壳。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。26 2.3.2安装群集软件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.3.3配置群集软件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.3.4探索PC。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>28 2.4启动并验证群集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 2.4.1开始群集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 2.2.2验证CoroSycc安装。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。31 2.4.3验证起搏器安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.4.4探索现有配置。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 2.5配置围栏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 2.5.1什么是围栏?。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>34 2.5.2选择和围栏设备。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>34 2.5.3配置簇用于围栏。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>35 2.5.4示例。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。35 2.6创建一个主动/被动群集。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 2.6.1添加资源。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 2.6.2执行故障转移。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 2.6.3防止恢复后资源移动。。。。。。。。。。。。。。。。。。。。。41 2.7添加Apache HTTP服务器作为群集服务。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.7.1安装Apache。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 42 2.7.2创建网站文档。 。 。 。 。42 2.7.1安装Apache。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.7.2创建网站文档。 。 。 。 。42 2.7.2创建网站文档。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.7.3启用Apache状态URL。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 2.7.4配置群集。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 2.7.5确保在同一主机上运行资源。。。。。。。。。。。。。。。。。。。。。。。。。44 2.7.6确保资源开始和停止。。。。。。。。。。。。。。。。。。。。。。。。45 2.7.7更喜欢一个节点,而不是另一个节点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 2.7.8手动移动资源。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。47 2.8使用DRBD复制存储。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48
在本文中,我们介绍了一种重工业中实用人工智能 (AI) 伦理的新方法,该方法是在欧盟 Horizons 2020 多合作伙伴项目的背景下开发的。我们首先回顾了工业 4.0 的概念,讨论了该概念的局限性,以及重工业的迭代分类的局限性,以形成一种实用的以人为本的伦理方法。然后,我们继续概述重工业的实际和潜在的人工智能伦理方法,表明当前强调广泛的高级原则的方法并不适合工业人工智能伦理。从那里,我们将自己的方法分为两部分。第一部分建议从头开始根据车间工人的时间和空间情况量身定制伦理,包括给出具体和不断发展的伦理建议。第二部分描述了伦理学家作为道德监督员的角色,他们沉浸在开发过程中,并在工业和技术 (tech) 开发伙伴之间进行解释。在介绍我们的方法时,我们大量借鉴了我们在项目用例中应用该方法的经验,作为可以做什么的例子。
摘要:尽管RNA的下一代测序(NGS)广泛使用,但多个RNA核苷酸修饰的同时直接测序和定量映射仍然具有挑战性。质谱(MS)的测序可以直接序列所有RNA修饰,而无需限于特定的测序,但是它需要很少有TRNA可以提供的完美MS梯子。在这里,我们描述了一种MS梯子互补测序方法(MLC-SEQ),该方法避免了完美的阶梯要求,从而可以在单核苷酸精度下对全长异质细胞TRNA进行全长异质细胞TRNA的测序。与基于NGS的方法(失去RNA修改信息)不同,MLC-Seq保留了RNA序列多样性和修改信息,揭示了新的详细的化学计量tRNA修饰谱及其在使用DealKylating酶ALKB治疗时进行的更改。也可以将其与参考序列结合使用,以提供对总TRNA样品中不同TRNA和修改的定量分析。MLC-Seq可以实现RNA修改的系统,定量和特定于位点的映射,从而揭示了TRNA的真正完整信息内容。■简介
亲爱的读者!并非每个开始都有魔力。恰恰相反,在1945年所谓的“零时”,无数人逃亡,不再有永久的居住地,不得不在新的环境、新的邻居、新的工作中重新开始。这个开始伴随着忧虑、艰辛和恐惧。建造新事物需要耗费很多精力。有些人确实被淘汰了。然而,1945年标志着一个旨在通过国际法和条约建立和平的新世界秩序的开始。欧洲随后经历了几十年的和平。危机让我们重新回到起点。历史告诉我们,危机可以催生新的事物,带来几十年的和平、安全甚至幸福。但新的开始也意味着要吸取过去的教训。这并不意味着简单地抛弃旧事物,而是克服它。只有这样,新的开始才能成功。在这本小册子中,我们想给你提供一些有益的建议,帮助你克服危机,找到重新开始的勇气。重新开始——不一定非要充满魔力,但可以是成功人生的开始。我希望你也能如此。她
生成人工智能(AI)为企业带来了重要的机会。大型语言模型(LLMS)可以帮助提高跨耗时的企业任务(例如复制,编程等)的效率。但是,这些模型通常很难跟上实时事件和特定的知识领域,这可能导致不准确。对这些模型进行微调可以增强他们的知识,但是它可能是昂贵,劳动力密集的,并且需要足够的技术专业知识。