将木质纤维素底物微生物转化为燃料和平台化学中间体为建立可行的生物经济提供了一条可持续的途径。然而,这种方法面临着一系列关键的技术、经济和可持续性障碍,包括:底物利用不充分、木质纤维素水解产物和/或最终产品毒性、产品回收效率低下、培养要求不兼容以及生产率指标不足。开发具有适合在工艺相关条件下高产率转化木质纤维素底物天然特性的生产宿主,提供了一种绕过上述障碍并加速微生物生物催化剂部署开发的方法。酪丁酸梭菌是一种天然的短链脂肪酸生产菌,它表现出一系列特性,使其成为转化木质纤维素底物的理想候选菌,因此是微生物生产各种羧酸衍生产品套件的有希望的宿主。本文回顾了该细菌作为工业微生物细胞工厂的开发的最新进展和未来方向,重点是利用木质纤维素底物和代谢工程方法。
摘要:基因组整合是微生物工业生产中基因表达的首选方法,但传统的基于同源重组的多重整合方法往往存在整合效率低、实验步骤复杂的问题。本文报道了一种基于CRISPR/Cas9的酿酒酵母多重整合(CMI)系统,该系统可在无需预先改造宿主的情况下在单个基因座实现四重整合。以融合蛋白Cas9-Brex27为诱饵,将Rad51重组酶吸引至CRISPR/Cas9系统引入的双链断裂附近。40 bp同源臂可将四重整合效率提高至53.9%,100 bp同源臂可将四重整合效率提高至78%。CMI被用于通过一步转化整合由四个基因组成的异源mogrol生物合成途径,为多重整合提供了一种有效的解决方案。该方法扩展了酿酒酵母的合成生物学工具箱。关键词:CRISPR/Cas9、多重整合、酿酒酵母、Brex27、合成生物学、代谢工程■ 简介
摘要。本文基于材料科学和资源利用的基本原理和原则。原位资源利用率(ISRU)可以充分利用太空中的材料来产生人类生存甚至星际迁移计划所需的资源。Bio-based biofuel production solutions can address human consumption in space exploration while allowing the production of fuels in a sustainable manner, with minimal inputs and producing cleaner, more environmentally friendly fuels.ISRU biofuel production can be achieved by directly converting inorganic carbon (atmospheric CO2) into target compounds as biofuels by autotrophic microorganisms, or by fixing carbon and then use将生物量或复杂底物转化为靶化合物的代谢工程,完成了两步生物燃料生产过程。在本文中,我们通过ISRU调查了在火星上生产生物燃料生产的潜在微生物细胞工厂,从而导致了一些相关的突破和发现。本文通过一系列研究推进了研究内容的发展。在本文中,我们研究并优化了基于基本燃料性能研究的新能源燃料的使用。根据先前的基础研究,本文在能源研究领域提供了一种新的思维和研究方式。
化学与生物化学系B.S.生物化学生物化学选修课(最低6个单位)Bioc 395b(仅MARC计划) - 科学写作1 NSC 408 - 营养生物学3 BIOS 376(也不能获得数学263的信用) - 简介。对生物稳定物3 NSC 475(S) - Dis的营养素学。上一个。&Inter。3 BME 486(F) - 生物材料组织相互作用3 NROS 307(F) - 细胞神经生理学3-4 Chee 377(F) - 工程师的微生物学3 NROS 310(S) - NROS 310 - NRECULAL和CLULLUALL BILUALUR&细胞生物学的神经元3-4 Chem 325(F)325(F) - F)325(F) - 分析化学32 N 2 N SROGEN 3 NROCEN-4330(S)430(S)(S) (F) - 分析化学实验室2 PCOL 320(F,S) - 物质的毒理学3 Chem 405a(S) - 基本实验室安全1 PCOL 410(S) - 药物化学5 Chem 405b(S) - 先进的实验室安全1 PHCL 412(F) - 介入。进行药理学3化学405C - 化学卫生与法规1 PHCL 445(S) - 滥用药物3 Chem 450(F) - 合成和机械有机化学3 phys 431(S) - 分子生物物理学3 ECOL 320(h)(f,ss) - 遗传学4-5 plp 320(f)320(f) - 32(f) - 32(f) - f,f) - f,f,f) - f,f) - f,f) - f,f) - f,f) - f,f) - f,f) - f,f) - f,f) - f,f) - f,f) - f,f) - f,f) - 320(ss) - 基因组学3 PLP 329A(F) - 微生物多样性3 ECOL 346 - 生物信息学4 PLP 428R(S) - 微生物遗传学3 ENVS 474(F) - 水上植物与环境4 PLS 312(S) - S) - 动物与植物遗传学4 ENVIS 477 ENVS 477 ENVOS 477 ENVOS 477 - SENTOL of ECOSOX of COLOXOX – 340(F)340(F)340(F)340(F)。生物技术3 IMB 401(S) - 药用微生物学和免疫学4 PLS 359(F) - 植物细胞结构和功能3 MATH 363(F,S) - 简介。 统计方法3 PLS 360(S) - 植物生长与生理学3 MCB 304(F) - 分子遗传学4-5 PLS 448A(F) - 植物生物化学和代谢工程。生物技术3 IMB 401(S) - 药用微生物学和免疫学4 PLS 359(F) - 植物细胞结构和功能3 MATH 363(F,S) - 简介。统计方法3 PLS 360(S) - 植物生长与生理学3 MCB 304(F) - 分子遗传学4-5 PLS 448A(F) - 植物生物化学和代谢工程。统计方法3 PLS 360(S) - 植物生长与生理学3 MCB 304(F) - 分子遗传学4-5 PLS 448A(F) - 植物生物化学和代谢工程。3 MCB 325(F) - 癌症生物学3-4 PSIO 380(F,S) - 人类生理学的基本原理4 MCB 410(F,SS) - 细胞生物学3-4 PSIO 404(S) - 细胞生理学中的先进主题3 MCB 411(F,SS)(F,SS) - SS) - 分子生物学3-4 PSIO 3-4 PSIO 3-420(F) - F) - F) - F) (S) - 生物信息学和功能。基因组分析3 PSIO 431(F,S) - 免疫系统的生理学3 MCB 425(S) - 癌症发现3 PSIO 465(S) - 神经生理学3 MCB 480(F) - 简介。To Systems Biology 3 PSIO 484 (S) – Cardiovascular Muscle Biology & Disease 3 MIC 328R (S, SS) – Microbial Physiology 3 PSY 413 (F, S) – Drugs, Brain, and Behavior 3 MIC 419 (F, SS) – Immunology 4 MIC 452 (F) – Antibiotics-A Biological Perspective 3 Course offerings per semester are subject to change; F,S和SS在上面的类中指定。请检查课程时间表以获取最新的课程信息。如果需要许可,学生有责任完成任何先决条件或联系发行部门。
摘要:本文深入探讨了人工智能 (AI)、生物技术和基因工程的交叉点,介绍了现代科学的三个前沿领域。人工智能已应用于生物技术和基因工程,加速了研究,提高了精度并扩大了可能性。这些跨学科领域的协同作用产生了合成生物学和系统生物学等新兴领域。本文深入讨论了机器学习和深度学习等人工智能技术在生物标志物发现、药物发现、基因编辑和基因组学研究等任务中的应用。尽管人工智能具有潜力,但本文还深入探讨了出现的挑战,包括过度拟合、模型可解释性、对稳健评估方法的需求等技术问题,以及道德和社会考虑。本文研究了数学和计算模型在理解和预测复杂生物系统中的关键作用,涵盖了传统模型和最先进的人工智能模型。详细的案例研究提供了人工智能在基因编辑、药物发现、代谢工程、合成生物学和个性化医疗中的实际应用示例。本文展示了对人工智能、生物技术和基因工程整合的变革潜力的思考,强调了这一快速发展的领域所需的未来研究以及对整个社会可能带来的利益。
摘要:干旱、盐度和极端温度等非生物胁迫是全球农作物生产力的主要限制因素,预计气候变化将加剧这些因素。活性氧 (ROS) 的过量产生是许多非生物胁迫的常见后果。抗坏血酸,也称为维生素 C,是植物细胞中最丰富的水溶性抗氧化剂,可以直接作为 ROS 清除剂对抗氧化应激,或通过抗坏血酸-谷胱甘肽循环(植物细胞中的主要抗氧化系统)对抗氧化应激。因此,通过工程改造具有增强抗坏血酸浓度的作物有可能促进广泛的非生物胁迫耐受性。已经采用了三种不同的策略来增加植物中的抗坏血酸浓度:(i) 增加生物合成,(ii) 增强循环,或 (iii) 调节调节因子。在这里,我们回顾了植物中抗坏血酸生物合成、循环和调节的遗传途径,包括迄今为止用于增加模型和作物物种中抗坏血酸浓度的所有代谢工程策略的总结。然后,我们重点介绍利用基因组编辑工具来增加作物中抗坏血酸浓度的非转基因策略,例如编辑控制 GDP-L-半乳糖磷酸化酶基因翻译的高度保守的上游开放阅读框。
摘要:利用工程原理重新设计生物体是合成生物学 (SynBio) 的目的之一,因此实验方法和 DNA 部件的标准化变得越来越必要。专注于酿酒酵母工程的合成生物学界一直处于这一领域的前沿,构想出了几种被该界广泛采用的特征明确的合成生物学工具包。在本综述中,我们将讨论为酿酒酵母开发的分子方法和工具包对所需标准化工作的贡献。此外,我们还回顾了为新兴非常规酵母物种设计的工具包,包括解脂耶氏酵母 (Yarrowia lipolytica)、Komagataella phaffii 和马克斯克鲁维酵母 (Kluyveromyces marxianus)。毫无疑问,这些工具包中强调的特征化 DNA 部件与标准化组装策略相结合,极大地促进了许多代谢工程和诊断应用等的快速发展。尽管在常见酵母基因组工程中部署合成生物学的能力不断增强,但酵母界在生物自动化等更复杂、更精细的应用中还有很长的路要走。关键词:标准化、特性、生物部件、酵母工具包、合成生物学、自动化
随着气候变化的加剧,减少人为造成的排放的需求变得更加紧迫,过渡到基于生物的经济至关重要。本文探讨了植物油作为基于石油的产品的可持续替代品的各种工业应用,包括它们在食品,聚合物,润滑剂,表面活性剂,农药,润肤剂和生物燃料中的使用。本综述深入研究了生物合成途径,详细介绍了涉及三酰基甘油合成的关键酶和过程。它彻底讨论了遗传和代谢工程如何不仅可以增加油产量,还可以改变脂肪酸成分以更好地满足工业需求。通过了解遗传学并利用先进的生物技术,植物来源的石油含量和质量可以显着增强,与可持续性目标和工业需求保持一致。本文对植物石油生产的当前用途和基因工程进行了全面概述,提出了创新的策略,例如利用生物质或种植不可食用的油作物的油。这些方法旨在建立一种可持续的工业体系,减少对化石燃料的依赖,并促进基于环境负责的生物经济的增长。此外,该评论强调了未来的方向,研究了在各个部门采用植物油的经济影响和环境益处,并将其定位为实现生态友好的,基于生物的经济的关键。
烷烃和烯烃是高价值的平台化学品,可由微生物合成,利用来自农产品工业和市政的有机残留物,从而为资源回收提供另一种机会。目前烷烃和烯烃生物合成的研究和技术进步主要受到产品滴度低的阻碍,阻碍了生物工艺的升级和大规模应用。因此,当前的科学研究旨在通过利用各种微生物底盘中的天然和工程代谢途径来抑制竞争代谢途径,并结合生物工艺优化来提高生产力。此外,为了降低成本,正在研究利用二氧化碳等无机碳源来促进烷烃和烯烃的绿色合成。因此,本综述批判性地讨论了烷烃和烯烃生物合成的机遇和挑战,旨在研究当前的技术进步。在这篇综述中,彻底讨论了烷烃和烯烃生物合成的五种主要代谢途径的局限性,并强调了它们的缺点。此外,还研究了各种技术,包括代谢工程、自养代谢途径和新的非生物合成途径,作为提高产品滴度的潜在方法。此外,本综述对烷烃和烯烃生物合成的经济和环境方面提供了宝贵的见解,同时也为未来的研究方向提供了展望。
基于生物的塑料,主要是多羟基烷烃(PHAS),为石油衍生的塑料提供了充满希望的替代品。第三代(3G;微藻/蓝细菌)生物量由于生物量快速生产力和代谢多功能性而变得非常重要。微藻可以通过利用CO 2和废水来产生PHA,并将它们确定为生物塑性生产的高度有希望和环保系统。这项全面的综述提供了对微藻-PHA生产的全面见解,从对物理和文化条件的优化到有效的PHA纯化过程。批判性审查还研究了培养策略,代谢工程和生物反应器发展方面的最新进步,这可能会导致更可持续和渐进的基于微藻的生物塑料积累。已经解决了藻类生物量产生通过综合废水处理的PHA积累的有效性。本综述研究了数学建模和新兴人工智能在推进基于藻类的PHA生产过程中的作用。最后,审查以讨论经济和社会挑战,生命周期分析以及先进微藻衍生的生物塑料生产的研究和开发前景的讨论结束,并在工业规模上预测了对经济上可行和可持续的基于微藻的PHA生产的潜在解决方案的预测。