条件是专门为本研究创建的。风速设置为 80 kt(150 公里/小时),相当于蒲福风级 17° 风暴强度时的风速。飓风期间也可以发现类似的风速。除了风力变化外,ILS 的另一个困难是,当超过 1,500 英尺时,风向会发生变化。风引起的湍流强度设置为最高水平。图 8 显示了 a) 在 Google Earth 中制作的 3D 路径着陆进近,以及 b) 使用 FS Instructor 创建的显示下滑道以及应用的理想 GP 线的图表。可以看出,ILS 未能引导飞机进入跑道。在进近开始时,飞机偏离了理想下滑道。由 ILS 引导的飞机在距离跑道外缘约 15 米处着陆。在这种情况下着陆时,飞行员有责任中断进近。如果在达到决策高度时发生这种情况,飞机将不会位于跑道轴线上。
航空业已见证了许多新型航空电子系统(例如,姿态指示器、无线电导航、仪表着陆系统、近地警告系统)的引入,这些系统旨在克服飞行员外部能见度有限的问题。然而,能见度有限仍然是影响全球航空运营安全和容量的最关键因素。仅在商业航空业,全球超过 30% 的致命事故被归类为可控飞行撞地 (CFIT),即正常运转、机械完好的飞机撞上地形或障碍物,而机组人员由于缺乏外部视觉参考或地形/危险态势感知受损而无法看到。在通用航空业,最大的事故类别是持续飞行进入仪表气象条件,即非仪表等级飞行员继续飞入恶化的天气和能见度,导致视野消失,并可能撞上意外地形或空间迷失方向并失去控制。最后,影响机场延误的最大因素是能见度有限,当天气条件低于目视飞行规则操作时,能见度会降低跑道容量并增加空中交通分离所需的距离。