氧化石墨烯(GO)已通过计时度计和使用三电极系统进行电化学合成。铁,锰和钴苯烷氨酸(分别为FEPC,MNPC和COPC)已被评为不可用的。这些材料在物理化学上是特征的(X射线光电子光谱(XPS),紫外线 - VIS,元素分析和拉曼光谱法),形态学上(透射电子微观,TEM)和电化学上的电化学(环状伏安法)。电化学研究包括使用合成的电催化剂的氧还原反应(ORR)和Zn-Air电池性能。此外,已经对Zn-Air Bat Tery的自支撑电极进行了制造和评估,氧化石墨烯氧化石墨烯烃(GOB)已被制造并评估。对GOB(GOB/FEPC)支持的GO/FEPC和FEPC,FE含量低于0.5 wt%。使用较低量的金属,GO/FEPC和GOB/FEPC表现出与基于PT的电催化剂的可比性。
摘要。这项工作将硼亚苯丙氨酸氯化物(B-SUBPC-CL)作为有机电子材料的结构,热重,光学和电化学性质。FullProf Suite程序和Rietveld分析用于完善和索引B-SubPC-CL的晶体结构。使用Horowitz-Metzger和Coats-redfern方法,使用热重分析(TGA)和差分热力学分析(DTG)研究动力学热重量因子。B-SUBPC-CL的吸收光谱包含两个强吸收带(Soret样带和Q样带)。通过使用B-SUBPC-CL的摩尔吸收性(ε摩尔)的高斯拟合来估算振荡器强度和电偶极强度。通过使用循环伏安法测量计算B-SUBPC-CL的Homo-Lumo和Band GAP。还提供了B-SUBPC-CL的UV-VIS - NIR吸收光谱和光条间隙。密度功能理论(DFT)方法已被用于为研究化合物获得几何优化的结构。理论计算与实验结果一致。获得的结果指出了B-SubPC-CL对有机电子应用的前景。
AkiSense 是一种创新的生物传感器,用于持续监测肌酐浓度,以便及早发现急性肾损伤 (AKI),主要针对 ICU 和 ICU 后患者。我们的解决方案旨在促进及时干预、减少住院时间并最终提高患者存活率,同时兼顾环保。这是通过电化学方法实现的,该方法使用基于适体的表面化学、方波伏安法和可逆性来创建校准曲线,从而实现高效的肌酐检测。该系统将墨盒技术与包含硬件和软件组件的设置相结合,以提供直观的用户界面。讨论了一个潜在的市场实现案例,其中概述了一项 10 年商业计划,以成功进入美国市场。关键考虑因素包括利益相关者参与、可行性评估和可行性分析。核心目标是将 AkiSense 发展为便携式贴片系统以增强实用性,同时从战略上确保资本并实施有效的业务战略,以成功推出、推广和增长。
b'abstract:钠离子电池(SIBS)是一种有前途的网格级存储技术,因为钠的丰度和低成本。为SIBS开发的开发是必须影响电池寿命和容量的,因此必须开发新的SIBS。目前,六氟磷酸钠(NAPF 6)用作基准盐,但具有高度吸湿性并产生有毒的HF。This work describes the synthesis of a series of sodium borate salts, with electrochemical studies revealing that Na[B- (hfip) 4 ] \xc2\xb7 DME (hfip = hexafluoroisopropyloxy, O i Pr F ) and Na[B(pp) 2 ] (pp = perfluorinated pinacolato, O 2 C 2 - (CF 3 ) 4 ) have出色的电化学性能。[B(pp)2]阴离子也表现出对空气和水的高耐受性。这两种电解质都比常规使用的NAPF 6具有更稳定的电极 - 电解质界面,如阻抗光谱和环状伏安法所示。此外,它们具有更大的循环稳定性和与NAPF 6的SIBS相当的能力,如商业袋细胞所示。
开发了一种新方法来制造 Fe3O4 修饰的多壁碳纳米管 (MWCNT),用于电化学超级电容器负极储能。在 MWCNT 存在下合成 Fe3O4,并使用各种阳离子和阴离子多环芳烃分散剂进行分散。通过比较使用不同分散剂获得的实验结果,可以深入了解分散剂分子的化学结构对 Fe3O4-MWCNT 材料微观结构的影响。研究发现,分散剂的带正电基团和螯合儿茶酚配体有利于形成团聚性较低的 Fe3O4 修饰的 MWCNT。使用不同分散剂制备的 Fe3O4-MWCNT 材料用于制造质量负载为 40 mg cm −2 的电极。使用阳离子天青蓝染料作为分散剂制备的 Fe 3 O 4 修饰 MWCNT 在 0.5 M Na 2 SO 4 电解液中获得了最高电容。使用 FeOOH 作为添加剂获得了改进的循环伏安曲线。基于 Fe 3 O 4 修饰 MWCNT 负极和 MnO 2 -MWCNT 正极制造并测试了非对称器件。
项目 C4:小分子催化转化为增值产品 PI:Sara Thoi 教授,化学 项目描述:该项目专注于合成和表征新型金属催化剂,用于激活和转化小分子,如二氧化碳(CO 2 )、氮(N 2 )、硝酸盐(NO 3 - )和其他丰富化合物。其中一个例子是开发金属有机骨架 (MOF) 将 N 2 转化为氨(NH 3 ),氨是一种重要的肥料,也是工业和制药化学品的氮前体。 REU 学生的角色: REU 学生将合成和表征各种含有地球丰富金属位点的催化剂,以激活小分子。他们将学习如何进行电化学实验,包括循环伏安法、计时电流法和原位振动光谱。 REU 学生将把催化剂的各种特性(结构、孔隙率、功能组、金属特性)与其催化性能(选择性和活性)关联起来。这些结构-功能关系将阐明机械原理,并为进一步的催化剂设计提供路线图。首选背景和技能:• 普通化学 • 电化学 • 合成
使用合作方法合成二氧化锰(MNO2)纳米颗粒,其结构,光学和电化学性质被系统地表征。透射电子显微镜(TEM)表明,MNO2纳米颗粒表现出明确的形态,尺寸分布均匀。X射线衍射(XRD)分析证实了材料和拉曼光谱的晶体性质进一步支持MNO2相的鉴定。傅立叶转换红外(FTIR)光谱证明了特征官能团的存在,而紫外线可见(UV-VIS)光谱估计的光条间隙为2.9 eV。热重分析(TGA)强调了MNO2的热稳定性,观察到最小的体重减轻高达800ºC。使用环状伏安法(CV)和电化学阻抗光谱(EIS)评估电化学性能,以10 mV/s的扫描速率揭示了236.04 f/g的高特异性电容。这些结果表明,MNO2纳米颗粒具有出色的电化学性能,使其成为能源储能应用的有前途的候选人。关键字:锰二氧化碳,共同沉积法,电化学性能,储能应用。
电感耦合等离子体 (ICP) 光谱法 22 总结 22 理论 22 检测限/范围 23 准确度/精密度 23 方法比较 23 砷形态分析 25 概述 27 样品和标准品的处理 27 样品 27 标准品 28 蒸发预浓缩 28 选择性氢化物生成 28 总结/理论 28 硼氢化钠还原 29 砷 (m) 的还原 30 砷 (V) 的还原 30 DMAA 和 MMAA 的还原 32 砷的分离 33 连续氢化物生成 33 干扰 33 检测系统 34 SDDC 检测 34 高效液相色谱法 35 离子色谱法 37 柱色谱法 38 气相色谱法 39 选择性液-液萃取40 AA-石墨炉检测 40 中子活化分析检测 41 选择性沉淀 42 比色法 43 钼砷酸盐 43 释放的碘 44 伏安法和极谱法 45 方法比较 46
摘要:本文报道了通过简便的水热法成功合成钴钌硫化物。使用 X 射线衍射、X 射线光电子能谱和拉曼光谱对所制备的钴钌硫化物的结构进行了表征。所有制备的材料均呈现纳米晶体形态。通过循环伏安法 (CV)、恒电流充放电 (GCD) 和电化学阻抗谱技术研究了三元金属硫化物的电化学性能。值得注意的是,优化后的三元金属硫化物电极表现出良好的比电容,在 5 mV s -1 时为 95 F g -1,在 1 A g -1 时为 75 F g -1,优异的倍率性能(在 5 A g -1 时为 48 F g -1)和优异的循环稳定性(1000 次循环后电容保持率为 81%)。此外,该电极在功率密度为 600 和 3001.5 W kg -1 时的能量密度分别为 10.5 和 6.7 Wh kg -1。这些诱人的特性使所提出的电极在高性能储能装置中具有巨大的潜力。
摘要:我们报道了一种利用壳聚糖 - 晶纳米片(CS-GNS)纳米复合材料的高效电化学免疫传感器,用于检测玉米样品中黄曲霉毒素B 1(AFB 1)。用作修饰层的CS-GNS纳米复合材料提供了重要的特定表面积和生物相容性,从而提高了电子传递速率和抗体固定的效率。利用差异脉冲伏安法(DPV)和电化学阻抗光谱(EIS)进行了电化学表征。此外,优化了抗体浓度,pH,抗体固定时间和免疫反应时间。结果表明,免疫反应之前和之后的当前变化(∆ I)表现出与AFB 1浓度以及良好的特异性和稳定性的牢固线性关系(R 2 = 0.990)。线性范围从0.05 ng/ml扩展,检测极限为0.021 ng/ml(s/n = 3)。免疫传感器的恢复率在玉米样品中的恢复速率范围从97.3%到101.4%,使用有效的方法显示出有希望的性能,并表明检测谷物中真菌毒素的前景显着。