未成熟胚和未成熟花序是间接高粱再生的最佳外植体。然而,从田间或温室中获取这些外植体需要很长的培养期。因此,幼苗的茎尖具有很大的优势,可以很容易地获得外植体,以满足全年基因转化实验的需求。这里我们报告了两种埃及高粱品系 LG1 和 LG3 的幼苗茎尖快速再生方案。愈伤组织诱导培养基 CIM1 和 CIM2 的合成生长素 2,4-二氯苯氧乙酸 (2,4-D) 和激动素 (Kin) 的浓度不同,它们在促进两种基因型的愈伤组织形成方面的能力不同,然而,这两种基因型对愈伤组织诱导的反应明显不同。 LG3 在 CIM1 上的最低愈伤组织指示百分比和最高愈伤组织诱导百分比分别为 16.60% 和 33.65%,而 LG1 在 CIM2 上的最低愈伤组织指示百分比和最高愈伤组织诱导百分比分别为 33.65%。两种基因型的愈伤组织再生差异不显著,最低为 11.29%,最高为 20.15%。我们的研究结果表明,利用这些埃及高粱品系进行组织培养以进行转基因和基因编辑具有潜力。
亲爱的编辑部 芹菜 ( Apium graveolens L.) 是伞形科的一种具有重要经济价值的叶菜作物,在世界各地广泛种植 [1]。生产上需要通过传统或现代分子遗传改良手段对芹菜进行品质、抗病虫害和晚抽薹等改良。常规育种遗传改良受限于育种周期长、随机性,因此基因工程育种的必要性凸显。精准的基因组编辑技术有可能突破常规育种的局限性。另外,芹菜功能基因组学的研究也对基因组编辑技术的发展提出了更高的要求。相对于其他主要作物,遗传转化体系不成熟和基因编辑技术不够发达已成为芹菜基础研究和遗传改良的瓶颈。 CRISPR/Cas9 系统是一种 RNA 引导的基因组编辑工具,由 Cas9 核酸酶和单向导 RNA(sgRNA)组成,可实现高效的靶向修饰[2,3]。由于其高效性和准确性,CRISPR/Cas9 诱导的基因组编辑已广泛应用于多种植物物种,以改善植物抗性和产量,并研究基因在控制农艺性状中的作用[2-4]。本文首次报道成功建立基于 CRISPR/Cas9 的基因组编辑系统,并通过在芹菜品种‘晋南诗芹’中靶向敲除八氢番茄红素去饱和酶基因(AgPDS)来验证该系统的有效性。 PDS 是类胡萝卜素生物合成中的一种限速酶,它催化无色八氢番茄红素转化为ζ-胡萝卜素,ζ-胡萝卜素进一步转化为番茄红素。它通常用作视觉标记来检测
前言 基因组编辑技术已被确定为实现《非洲联盟 2063 年议程》而增强现有干预措施的潜在新选择。随着基因组编辑工具变得更加精细,预计用于基础研究、保护、农业、公共卫生和其他目的的基因组编辑技术的拟议应用可能会继续扩大。 基因组编辑在植物和动物改良以及医学领域有广泛的应用。例如,成簇的规律间隔短回文重复序列 (CRISPR) 已被用于编辑水稻基因组,从而改善与产量相关的性状,例如密集而直立的圆锥花序和降低植株高度;开发晚花大豆,导致营养体大小增加;开发抗柑橘溃疡病的柑橘植物;生成适合人类疾病建模的动物,例如 CRISPR 编辑的食蟹猴,用于研究无法在小鼠身上充分研究的脑部疾病;用于治疗人类免疫缺陷病毒 (HIV) 的研究等。为应对基因组编辑技术的不断进步,管理局通过广泛的利益相关方协商和审查已部署此类技术的其他国家的监管机制,制定了一份指导文件,以确定基因组编辑技术的监管流程。该文件涵盖了实施的各个方面,以及该国的基本测试途径和实施策略,同时考虑到所有可能的社会文化和伦理问题。本文件并非旨在详细说明如何进行基因组编辑产品的风险评估和风险管理。
Boronia boliviensis(Bolivia Hill Boronia)是一种传统上接受的物种(Chah 2008)(Chah 2008),北谷(Valvatae)系列Erianthae(Duretto and Ladiges 1999)。威廉姆斯和亨特(Williams and Hunter,2006年)将其描述为“截至1.5(–2.2)M高的灌木,高,有气味的枝; brandlet子,覆盖着非常短的,连续的,多角质的黄色星状头发,随着年龄的增长而变得无毛。叶子大部分是7-11个传单,很少有一些叶子上有1-5个传单(尤其是在开花的树枝上); Rachis 2–12(–20)毫米长,连接,宽8-15毫米,翅膀狭窄,Rachis Wings平坦或弯曲; leaflets narrow-elliptic, sessile, 3.8–9 mm long, 0.5– 1.5 mm wide, apex acute to sub-obtuse, broadest above the middle, margins entire and closely revolute, rarely only recurved, upper surface deep green with a sparse indumentum of stellate hairs or ± glabrous, the surface and margin dotted with large, sunken oil glands, lower surface often hidden by revolute边缘,但明显苍白时,通常无毛;叶柄长1-3毫米。花序腋窝,1-3朵花; prophylls unigriate;花梗1.5–2毫米长;花梗长2-3毫米。花萼裂片深红色,窄叶,急性或渐尖,长2.5-3.8毫米,宽1-2毫米,不久的是毛茸茸的毛茸茸。花瓣粉红色,长4-9毫米,宽3–4毫米,芽瓣,芽中的瓣膜,很快是静态的,无毛,或几乎是精美的简单头发
人生历史Dicentra Eximia(狂野的出血心)是富马西亚科中一种有吸引力的多年生草药。Brooks(1911)将D. Eximia植物描述为精致而美丽,Rydberg(1929)指出,这是他见过的最美丽的本地花之一。dicentra eximia具有粗壮的鳞状根茎,并在长叶柄上细分(蕨类植物)的基部叶片分裂(蕨类植物),这些叶柄在底部略微膨胀。叶子可能长4 dm,但扩散的生长习惯可以使植物显得宽或宽(Cahalan 2008,Longfellows 2024)。Dicentra Eximia的开花茎是无叶的,通常比叶子更长,终止于由短分支上的几个小花簇组成的花序。花萼是一对保护发育中的花蕾的小萼片,在盛开的时间被丢弃。花冠是双侧对称的,包括两对花瓣。大的外部花瓣长约2厘米,它们固定在一起,形成一个细长的心形形状,以4-8毫米长的一对喇叭形裂片结尾,而内部花瓣大多是隐藏的,除了它们的波峰超出了外部花瓣的叶子之外。所产生的结构与吊坠液滴产生心脏的印象。因此,通用名称(Cahalan 2008,Gracie 2012)。D. exiamia花颜色可能从深玫瑰紫色到粉红色,或者偶尔白色。果实长到卵形胶囊长18-22毫米。(请参阅Britton and Brown 1913,Rydberg 1929,Fernald 1950,Stern 1961&2020,Gleason and Cronquist 1991,Tebbitt等人,Tebbitt等人。2008)。2008)。
摘要藜麦(Chenopodium Quinoa willd。)是一种伪谷物,因为其营养状况,用作超级食品。这项研究的重点是36种藜麦基因型的形态和分子表征,旨在评估其遗传多样性和繁殖潜力。选择了十个定性特征进行形态学分析,揭示了诸如Spikelet颜色,叶长度和植物高度等性状的显着变化。方差分析表明,大多数定量性状,包括花至50%开花和种子产量,在基因型之间显示出显着差异,表明遗传变异性很大。高遗传力和遗传进步,这表明遗传改善的强大潜力。基因型性能突出了基因型ACQS1,EC 896115,IGKVC-12,ACQS8,EC 896208和EC 896219中的出色特征,用于叶片长度,节间的数量,叶片的数量,叶片宽度,叶片宽度,叶柄长度,叶柄长度,植物长度,植物高度,植物高度,繁殖时间和花序数量。基因型EC 896065,EC 896213,EC 896201,SHQ4,SHQ5,ACQS1,ACQS1,ACQS2,ACQS3和EC 896218表现出更高的种子重量,而EC 896109,ACQS3,ACQS1,ACQS1和EC 896219显示出更高的收益率。High genotypic and phenotypic coefficient of variation (GCV and PCV) were recorded for leaf length (31.22, 34.71), leaf width (43.64, 44.91), number of internodes (40.47, 40.59), petiole length (35.46, 36.04), plant height (33.35, 54.47), length of inflorescence (36.41, 36.99)和种子产量(33.58,34.53)。关键字:聚类分析,遗传进步,遗传力,ISSR,藜麦,变体。的遗传力对于节间的数量最高(99.38%),并且在诸如叶片长度(57.86%)和种子产量(67.28%)等性状中观察到了显着的遗传进步。种子重量显示出最高的正直接效应(0.701),其次是每植物的花序数量(0.700),而天数为50%开花(-0.768)显示出最高的负面直接效应。使用16个ISSR标记的分子多样性分析显示,多态性率为56.1%,标志物之间存在显着的等位基因变化。 多态性信息内容(PIC)值在0.274到0.797之间,表明标记信息的水平不同。 聚类分析将基因型分为两个主要簇,证明了研究的基因型之间的遗传多样性。 探索关键特征的遗传基础并进行进一步的分子表征可以为藜麦的遗传结构提供更深入的见解。 此外,结合更先进的基因组工具并扩展基因型池可以促进高产物,弹性藜麦品种的发展。使用16个ISSR标记的分子多样性分析显示,多态性率为56.1%,标志物之间存在显着的等位基因变化。多态性信息内容(PIC)值在0.274到0.797之间,表明标记信息的水平不同。聚类分析将基因型分为两个主要簇,证明了研究的基因型之间的遗传多样性。探索关键特征的遗传基础并进行进一步的分子表征可以为藜麦的遗传结构提供更深入的见解。此外,结合更先进的基因组工具并扩展基因型池可以促进高产物,弹性藜麦品种的发展。
抽象关键信息小麦转录因子BZIPC1与FT2相互作用,并影响Spikelet和每个峰值的晶粒数。我们确定了一个天然等位基因,对这两个经济上重要的特征具有积极影响。在小麦中的基因开花基因座T2(FT2)中的功能丧失突变和自然变异已被证明会影响每个峰值(SNS)的尖峰数。 然而,尽管其他类似FT的小麦蛋白与来自A组的含BZIP的转录因子相互作用,但FT2不与任何一个相互作用。 在这项研究中,我们将酵母2杂交筛选带有FT2作为诱饵,并从C-Group中鉴定出含BzipC1的基于BZIPC1的基因BZIP的转录因子。 在C组中,我们确定了四个进化枝,包括与不同的FT相互作用的小麦蛋白,例如像编码的蛋白一样。 BZIPC1和FT2表达在发育中的峰值中部分重叠,包括花序分生组织。 在BZIPC-A1和BZIPC-B1(BZIPC1)中的功能丧失突变在四倍体小麦中导致SNS的急剧减少,对标题日期的影响有限。 分析BZIPC-B1(TRAESCS5B02G444100)区域的自然变化区域显示,三种主要的单倍型(H1-H3),H1单倍型显示出比H2和H3单倍型的SNS明显更高,每个峰值的晶粒数明显更高,每个峰值的晶粒数明显更高。 H1单倍型的有利作用也得到了其从祖先培养的四倍体到现代四倍体和六比小麦品种的频率增加的支持。在小麦中的基因开花基因座T2(FT2)中的功能丧失突变和自然变异已被证明会影响每个峰值(SNS)的尖峰数。然而,尽管其他类似FT的小麦蛋白与来自A组的含BZIP的转录因子相互作用,但FT2不与任何一个相互作用。在这项研究中,我们将酵母2杂交筛选带有FT2作为诱饵,并从C-Group中鉴定出含BzipC1的基于BZIPC1的基因BZIP的转录因子。在C组中,我们确定了四个进化枝,包括与不同的FT相互作用的小麦蛋白,例如像编码的蛋白一样。BZIPC1和FT2表达在发育中的峰值中部分重叠,包括花序分生组织。在BZIPC-A1和BZIPC-B1(BZIPC1)中的功能丧失突变在四倍体小麦中导致SNS的急剧减少,对标题日期的影响有限。分析BZIPC-B1(TRAESCS5B02G444100)区域的自然变化区域显示,三种主要的单倍型(H1-H3),H1单倍型显示出比H2和H3单倍型的SNS明显更高,每个峰值的晶粒数明显更高,每个峰值的晶粒数明显更高。H1单倍型的有利作用也得到了其从祖先培养的四倍体到现代四倍体和六比小麦品种的频率增加的支持。我们开发了两个非同义SNP的标记,这些标记将H1单倍型中的BZIPC-B1B等位基因与所有其他单倍型中存在的祖先BZIPC-B1A等位基因区分开。这些诊断标记是加速在面食和面包小麦育种计划中的有利BZIPC-B1B等位基因部署的有用工具。
常规育种对于改善与产量相关的性状和发展高产物品种至关重要。在提出的研究中,对15个F 1杂种的评估将它们与其六种父母基因型进行了比较,以便各种特征的遗传变异。结果表明,差异分析显示跨组合和父母品种以及父母和十字架之间的显着(p≤0.01)。所有特征的父母与杂交的平均平均值也表明(p≤0.01)。对于F 1 Generation研究的所有特征,一般(GCA)和特定组合能力(SCA)方差均显着(P≤0.01)。三种品种,即Sakha108,Giza179和Sakha109,对于谷物产量植物-1的高度阳性为阳性,这意味着这些品种可以使作为好的组合者受益,以转移育种计划中的上述特征。在SCA中,七个十字在植物的高度上为负,并且需要负值以避免住宿并适合机械收集;但是,在其余的特征中,优选阳性的显着值是可取的。结果表明,谷物产量植物-1和植物高度的最佳交叉是Sakha105×Sakha102,Sakha105×Sakha108和Sakha108×Sakha109。进行聚类分析也表现出分为四组的基因型。第一组仅包括大米基因型Sakha109和Sakha108。这些品种是由共同的父sakha101产生的,可以具有三个定量性状的遗传关系(旗叶面积,1000粒粒度和圆锥体重量)。包括Sakha 102和Sakha 106的第二组具有非常相似的遗传背景,因为两个品种共享一个共同的父母,Giza 177。此外,这两个水稻品种的分ers植物的植物数量为-1、1000粒重量,而圆锥花序植物-1。第三组仅包括属于Indica-Japonica品种的Giza 179。第四组由不同父母生产的Sakha 105。关键字:水稻(oryza sativa L.),育种,能力,遗传变异,遗传潜力,基因型和表型方差,遗传力
生物学 生物世界的多样性:生物世界:生物世界的多样性,分类类别,生物学分类:界(原核生物界、原生生物界、真菌界、植物界和动物界),病毒、类病毒和地衣,植物界:藻类、苔藓植物、蕨类植物、裸子植物、被子植物,动物界:动物分类的基础和动物分类植物和动物的结构组织:开花植物的形态:根、茎、叶、花序、花、果实、种子,典型的开花植物的半技术描述,一些重要科的描述,开花植物的解剖学:组织系统,双子叶植物和单子叶植物的解剖学动物的结构组织:器官和器官系统,两栖动物 - 青蛙细胞:结构和功能:细胞:生命:细胞、细胞理论、细胞概述、原核细胞、真核细胞 生物分子:生物体化学成分分析、初级和次级代谢物、生物大分子、蛋白质、多糖、核酸、蛋白质结构、酶 细胞周期和细胞分裂:细胞周期、有丝分裂和减数分裂及其意义 植物生理学:高等植物的光合作用:光合作用、早期实验、光合作用的位置、参与光合作用的色素、光反应、电子传递、ATP 和 NADPH 的合成和利用、C4 途径、光呼吸、影响光合作用的因素 植物的呼吸作用:植物呼吸吗?糖酵解、发酵、有氧呼吸、呼吸平衡表、克雷布斯/柠檬酸循环、呼吸商植物生长和发育:生长、分化、去分化和再分化、发育、植物生长调节剂人体生理学:呼吸和气体交换:呼吸器官、呼吸机制、气体交换、气体运输、呼吸调节、呼吸系统疾病体液和循环:组织液-血液、淋巴、循环途径、双循环、心脏活动调节、循环系统疾病排泄产物及其消除:人体排泄系统、尿液形成、小管功能、滤液浓缩机制、肾功能调节、排尿、其他器官在排泄中的作用、排泄系统疾病
蒙特塞拉特可再生能源项目标志着政府和当地公用事业公司采取行动 3 月 24 日星期五,蒙特塞拉特政府通过通信、工程和劳工部 (MCWL) 和蒙特塞拉特公用事业有限公司 (MUL) 发布了一份资格要求,要求有意者具备 1 兆瓦 (MW) 太阳能光伏 (PV) 和电池储能项目的工程、采购和建设资格。该太阳能项目是去年发布的新技术国家能源政策的一部分,该政策名为“变革的力量 - 蒙特塞拉特能源政策 2016-2030 (MEP 2016-2030)”。该招标代表两个太阳能项目阶段中的第一阶段。第一阶段的太阳能容量为 250 千瓦 (kW)。竣工后,第一个太阳能项目将产生当前峰值负荷或所需最大电力的 11%。第二阶段将于 2018 年初开始,包括额外的 750kW 太阳能电池板和相关电池储存装置。 如需了解更多信息或参与项目投标,请访问政府网站 www.gov.ms/tenders/ 的招标栏目。 媒体垂询,请联系 klau@carbonwarroom.com 关于蒙特塞拉特公用事业有限公司 蒙特塞拉特公用事业有限公司由现有的电力(Monlec)和水务(MWA)公用事业公司合并而成。 合并完成后,MUL 收购了前身组织的所有资产、负债、职责和特权,并根据新立法(公用事业法)开始运营。 因此,MUL 成为前身组织蒙特塞拉特电力服务有限公司和蒙特塞拉特水务局的伞形公司,继续负责蒙特塞拉特的电力和水务。关于落基山研究所和碳战室 落基山研究所 (RMI) 是一家成立于 1982 年的独立非营利组织,致力于改变全球能源使用方式,创造清洁、繁荣和安全的低碳未来。它与企业、社区、机构和企业家合作,加速采用以市场为基础的解决方案,以经济高效的方式从化石燃料转向高效和可再生能源。2014 年,RMI 与碳战室 (CWR) 合并,后者以企业为主导的市场干预措施推动低碳经济发展。合并后的组织在科罗拉多州巴萨尔特和博尔德、纽约市、华盛顿特区和北京设有办事处。