siddha Medicine是一种古老的印度替代医学,它采用了一系列旨在通过操纵体内能量场来促进整体福祉的实践。能量康复在各种健康疾病中提供有价值的辅助工具具有巨大的预期;它在各种条件管理中的安全性和功效。尽管其越来越受欢迎,但能源康复技术仍然存在争议,并与医学界的认可和接受打击了几个障碍。本文认可了Siddha医学中能量康复的概念和实践的广泛概述,与其他古老实践相似的历史证据,对不同形式的现代身体能量系统的熟悉以及其实践的深入驱动因素以及在少数情况下的应用。此外,纸还探究了其对其广泛批准和采用的抵抗力;进行彻底的科学研究进行传导的要求,以证明其功效和安全性,以帮助将传统医学与能量医学联系起来,从而强调了更统一的健康和康复的潜力。
肿瘤免疫微环境是一个非常复杂的系统,受多种因素影响;在该微环境中,各种免疫细胞、基质细胞和细胞因子可以与肿瘤细胞相互作用,共同调节这个复杂的生态系统。在肿瘤发展过程中,肿瘤微环境 (TME) 表现出抑制信号的上调和激活信号的下调,从而形成免疫抑制微环境并导致肿瘤免疫逃逸。近年来,已经开发出多种精准免疫治疗策略,通过刺激或恢复免疫系统固有的肿瘤抑制能力,将 TME 重塑为积极的免疫微环境,以提高抗肿瘤治疗效果。本文主要介绍针对肿瘤微环境的免疫治疗策略,包括针对微环境抑制信号传导、激活信号传导的策略,具体涉及物理屏障、免疫细胞及其表面分子受体、细胞因子、代谢因子等多个新靶点,并总结了肿瘤免疫微环境研究中面临的挑战及相应的解决方案。
摘要:DNA 损伤反应 (DDR) 对确保基因组稳定性至关重要,该信号通路的缺陷与致癌作用和肿瘤进展密切相关。然而,这也提供了治疗机会,因为具有缺陷 DDR 信号传导的细胞被引导依赖补偿性生存通路,并且这些弱点已被用于抗癌治疗。继 PARP 抑制剂在治疗 BRCA 突变的乳腺癌和卵巢癌方面取得令人瞩目的成功之后,人们已经对开发 DDR 信号通路关键成分的药理抑制剂进行了广泛的研究。在这篇综述中,我们讨论了 DDR 通路的关键元素以及这些分子成分如何作为抗癌治疗靶点。我们还总结了 DDR 通路抑制剂领域的最新有希望的发展,重点关注 PARP 抑制剂以外的新型药物。此外,我们讨论了生物标志物研究,以确定有望获得最大临床益处的目标患者,以及与其他类别的抗癌药物的联合策略,以协同和优化临床益处。
数十年来,KRAS突变肺腺癌(LUAD)一直对基于个性化医学的治疗策略难治性,这是因为设计抑制剂的复杂性可以选择性地靶向具有可接受毒性的KRAS和下游靶标。选择性KRAS G12C抑制剂的最新发展是自鉴定为人类基因以来40年的激烈研究工作后的地标。在这里,我们讨论了负责快速发展对这些抑制剂的耐药性的机制,以及克服这一限制的潜在策略。还审查了旨在通过靶向上游激活剂或下游效应子来抑制KRAS致癌信号传导的其他治疗策略。最后,我们讨论了靶向有丝分裂原激活的蛋白激酶(MAPK)途径的效果,这是基于MEK和ERK抑制剂在临床试验中的失败,以及由于其与MAPK无关的活性而导致的RAF1作为潜在靶标的近期鉴定。这些新的发展共同开放了新的途径,可以有效地治疗Kras突变体Luad。
摘要 — 为了确保这种新兴器件的可靠性,控制导电桥式随机存取存储器 (CBRAM) 中的细丝生长至关重要。在这里,我们证明了扫描焦耳膨胀显微镜 (SJEM) 可用于检测和精确定位工作中的交叉 CBRAM 器件中的导电细丝。基于 Pd/Al 2 O 3 /Ag 堆栈的柔性存储器件首先在低温下在聚酰亚胺基板上精心制作。这些器件在低压 (<2V) 下显示置位和复位操作,开/关比高于 10 4 。在低电阻状态下操作时,SJEM 振幅图像显示出单个导电细丝存在下的热点。在 50kHz 下提取的有效热扩散长度为 4.3µm,并且还证明了热膨胀信号与耗散的焦耳功率成正比。我们相信,所提出的程序为可靠性研究开辟了道路,可将其应用于任何基于细丝传导的存储器件系列。索引词——CBRAM、柔性电子、SJEM、长丝定位。
我们使用密度功能理论(DFT)框架研究了铜 - 甘油(CU – G)复合材料的电子传输性能。通过改变铜/石墨烯/铜(Cu/g/cu)界面模型的界面距离来研究复合材料中的传导。使用kubo-greenwood公式计算的模型的电子电导率表明,电导率随Cu – g的降低而增加,并且饱和以下是阈值Cu – g g距离。基于DFT的BADER电荷分析表明,在界面层和石墨烯的Cu原子之间的电荷转移增加,Cu – G距离降低。状态的电子密度揭示了铜和碳原子在费米水平附近的贡献,而Cu – G界面距离降低。通过计算Cu/g/cu模型的空格电导率,我们表明石墨烯在小Cu – G距离处形成了电子传导的桥梁,从而增强了电导率。
感觉神经的细胞体有两个轴突。进入脊髓,向大脑传达信息。其他人会从皮肤,关节和肌肉中的专门受体传输消息。受体感知压力,位置或温度或疼痛的变化,并将刺激转化为神经冲动,这是通过感觉神经纤维传递到大脑的。传导神经纤维最快的神经纤维就像电话线一样,有自己的绝缘鞘。护套由髓磷脂制成,髓磷脂是一种由特殊细胞制成的脂肪物质,称为schwann细胞。神经纤维会很快进行神经冲动,因为髓鞘鞘的每毫米有间隙,这使神经冲动可以从间隙跳到间隙,并更快地行驶。这些快速传导的髓神经纤维控制快速运动并允许良好的触摸歧视。也有许多没有髓鞘的神经纤维。这些被称为无髓纤维,并更慢地进行神经冲动。它们信号疼痛和温度,对于控制血液循环和出汗很重要。
数十年的证据将IL-1 B定位为急性和慢性炎症性疾病中的主要调节细胞因子。旨在抑制IL-1信号传导的批准的生物制剂已显示出效率,但安全性可变。最近,靶向IL-1 B上游介质NLRP3激活引起了最大的关注。异常NLRP3激活已证明参与了从神经发生疾病到心脏代谢综合征和癌症的几种病理状况的发展。旨在限制NLRP3功能的药理和遗传策略已被证明在许多临床前疾病模型中有效。这些证据导致了可以针对NLRP3的小型口服分子的生成和临床测试的重要努力。在本报告中,我们讨论了这些分子具有转化潜力的不同特性,并描述了目前可用于筛选NLRP3靶向分子的技术,这些技术突出了每种方法的优势和局限性。
在临床研究和临时性研究中,压力和精神疾病与孕产妇和后代微生物组的中断以及后代患有精神疾病的后代风险增加的压力和精神疾病与中后代的破坏是独立的。然而,微生物组在介导产前压力对后代行为的影响中的作用尚不清楚。虽然临床前研究确定了几种关键机制,但重点关注机制的临床研究是有限的。在这篇综述中,我们讨论了三种特定机制,通过这些机制,微生物组可以介导产前应力的影响:1)改变短链脂肪酸的产生; 2)TH17(T辅助17)的破坏细胞分化,导致母体和胎儿免疫激活; 3)肠道和微生物色氨酸代谢以及血清素能信号传导的扰动。最后,我们回顾了关注这些机制的现有临床文献,并强调需要进行其他机械临床研究,以更好地了解微生物组在产前压力中的作用。
植物可能缺乏流动性,但对病原体和害虫构成的不断威胁并非毫无防御。模式识别受体(PRR),使植物能够有效识别入侵者。这些受体通过传感引起或损坏引起的细胞壁的碎片发挥作用。最近的研究强调了在发现寄生虫后,在国防机制协调中维持细胞壁完整性的重要性。病原体侵袭通常会触发细胞壁结构的改变,从而导致B-葡萄糖和寡乳糖苷剂等分子的释放。这些小分子然后被PRR识别,该分子刺激了涉及受体样激酶和钙依赖性信号传导的下游信号通路。在这里,我们对植物信号的最新见解在免疫中起着至关重要的作用:维持细胞壁完整性;受体样激酶之间复杂的相互作用;以及钙离子的参与。审查的目的是为读者提供对植物防御策略潜在机制的更深入的了解。