学生必须证明通过测试的外语或放弃熟练程度。此外,强烈建议学生出国留学或开始全球浸入式旅行。IB学生被鼓励在坦普尔大学罗马或坦普尔大学日本度过一个学期或更多。学生还可以在福克斯的任何合作伙伴地点参加计划:法国巴黎或里昂;爱尔兰都柏林;英国伦敦;墨西哥墨西哥城;西班牙奥维耶多;首尔,韩国。其他外部留学机会比比皆是。此外,学生可以在IB 2509中体验全球浸入,这使学生有机会在外国体验业务。
摘要:无线充电是一种使用电磁场通过电磁诱导传输能量的一种充电方法。通过相互诱导的过程在设备(发射器和接收器)之间传递能量。来自太阳能的功率作为输入发射器电感线圈的输入,接收器电感线圈接收电源并将其转换为电流以给电池充电。太阳能电池板将太阳能转换为电力。他们使用光电效应的概念,当光落在太阳能电池板上时电子的发射。太阳能电池板由硅细胞组成,硅具有原子编号14。当光落在硅细胞上时,硅的最外部电子即两个电子设置为运动。这引发了电流。硅具有两种不同的细胞结构:单晶和多晶单晶太阳能电池板是由一个大硅块制造的,并以硅晶片格式制成。多晶太阳能电池也是硅细胞,它们是通过将多个硅晶体融合在一起而产生的。使用吸引人的回响的无线电力传输(WPT)是创新,它可能使人免于刺激性的电线。的确,WPT具有类似的基本假设,该假设刚刚创建了30年的归纳功率交换一词。最近,WPT创新在控制水平上正在迅速增长。使WPT对固定和动态充电情况的电动汽车(EV)充电应用非常有用。该项目调查了WPT中远程充电的进步。通过在电动汽车中呈现WPT,充电系统可以有效缓解。电池创新在电动汽车的大众市场入口中再也没有相关。信任的是,专家可以得到前沿成就的支持,并像EV的扩展一样推动WPT的进一步改进。
本论文/毕业论文由 Scholarship@Western 免费提供给您,供您开放访问。它已被 Scholarship@Western 的授权管理员接受并纳入电子论文和毕业论文库。如需更多信息,请联系 wlswadmin@uwo.ca 。
YEC 目前正在 Yindjibarndi Ngurra 西北部开发 Baru 项目。该项目包括一个约 300MW 的风力发电场和一个约 250MW 的太阳能电池阵列,并可选择包含电池储能系统 (BESS)。从长远来看,YEC 的目标是在 Yindjibarndi Ngurra 内开发 2-3GW 的风能和太阳能综合能源,以促进皮尔巴拉地区的脱碳并支持新的绿色产业举措。
摘要:最近,人们对具有负磁导率并在 GHz 和 MHz 频率范围内工作的磁性超材料进行了大量研究。这些超材料结构可用于提高近场无线电力传输系统、地下通信和位置传感器的效率。然而,在大多数情况下,它们只设计用于单一应用。本研究重点研究磁感应波在有序排列的磁性超材料结构中的传输。该结构可同时用于无线电力传输和近场通信。单元由植入在 FR-4 基板上的五匝螺旋线形成。外部电容器用于调节磁性超材料单元的谐振频率。磁感应波的特性,包括反射、传输响应和波导上的场分布,已经得到了广泛的计算和模拟。获得的结果表明,一维和二维磁性超材料配置都具有传导电磁波和传播频率为 13.56 MHz 的磁场能量的能力。还研究了直路径和交叉路径配置,以确定二维超材料板上的最佳配置。
∂ttt f e + + +Δk∆ ∆ ∆ ∆ ∆C C ∆ ∆ ∆CCCCCH + ft E K当它是Iσσσσ演出时,
碳材料显示出有趣的物理特性,包括在石墨烯中发现的超导性和高度各向异性的热导率。压缩应变可以在碳材料中诱导结构和键合跃迁并创建新的碳相,但是它们与导热率的相互作用仍然在很大程度上没有探索。我们使用Picsecond瞬时热室内和第一原理计算研究了压缩石墨阶段的原位高压导热率。我们的结果表明,在15 - 20 GPA时峰值至260 W = MK峰值,但降至3。0 W = 〜35 GPA的MK。与免费的原位拉曼和X射线衍射结果一起,压缩碳的异常热导率趋势归因于声子介导的电导率,受层间屈曲和SP 2的影响,SP 2转换为SP 3过渡,然后,M-Carbon Nanocrystals和Nananocrystals和Nananocrystals和Amorphous Carbos的形成。应变诱导的结构和键合变化提供了碳材料中热和机械性能的广泛操作。
绝大多数星形星系都被星际介质弹出的大量气体包围。紫外线的吸收和发射线代表强大的诊断,以通过氢和金属离子的谐振过渡来限制这些流量的凉爽相。对这些观察结果的解释通常很困难,因为它需要对气体中连续性和发射线传播的详细建模。为了实现这一目标,我们提供了一个大约20000个模拟光谱的大型公共网格,其中包括与Mg II,C II,C II,SI II和Fe II相关的H ilyα和五个金属过渡,可在线访问。光谱已经使用Rascas Monte Carlo辐射传输代码计算出5760个理想化的球形对称配置,围绕中心点源发射,并以其柱密度,多普勒参数,尘埃不透明,风速,风速以及各种密度和速度渐变为特征。旨在预测和解释LYα和金属线专利线,我们的网格表现出广泛的谐振吸收和发射特征,以及荧光线。我们说明了如何通过对观察到的LYα,C II和SI II光谱进行关节建模来帮助更好地限制风质。使用多云的模拟和病毒缩放关系,我们还表明,即使培养基被高度离子化,也有望成为T≈104-10 5 K的气体的忠实示踪剂。发现C II探测与LYα相同的温度范围,而其他金属线仅痕迹冷却器相(T≈104 K)。由于它们的气体不透明度在很大程度上取决于气体温度,入射辐射场,金属性和粉尘耗尽,因此我们要警告光学上的金属线不一定源自低H I柱密度,并且可能不会准确探测Lyman Continuum Continuum Continuum泄漏。