量子色动力学 (QCD) 相图的探索在很大程度上依赖于在不同束流能量下进行的重离子碰撞实验 [ 1 , 2 ]。这些碰撞跨越不同阶段,演变过程错综复杂,需要一个多阶段的理论框架。该框架已成功描述了大量测量结果。最终强子的集体流为我们了解早期动力学、传输特性和所产生的致密核物质的状态方程 (EoS) 提供了至关重要的见解 [ 3 ]。定向流 (v 1 ) 表示集体侧向运动,对早期演化和状态方程尤其敏感 [ 3 , 4 ]。dv 1 / dy | y = 0 的非单调行为(v 1 ( y ) 在中快速度附近的斜率)已被提出作为强子物质和夸克胶子等离子体 (QGP) 之间一级相变的指示 [ 3 , 5 , 6 ]。这是因为相变引起的 EoS 软化可能导致膨胀过程中定向流的减少,从而导致 dv 1 / dy | y = 0 与束流能量的关系达到最小值 [3]。然而,强调 v 1 ( y ) 对各种动力学方面的敏感性至关重要。人们已经利用各种模型来计算从 AGS 到最高 RHIC 能量的 v 1 ( y ),结果差异很大,但没有一个能有效地描述跨束流能量测量的主要特征 [7,8]。在本文中,我们使用具有参数初始条件的 (3 + 1) 维混合框架解释了介子和重子的 v 1 ( y ),并揭示了它对有限化学势下重子初始停止和致密核物质 EoS 的约束能力 [9]。
Matthew C. Beard 博士是美国国家可再生能源实验室 (NREL) 的高级研究员,也是科罗拉多大学博尔德分校可再生和可持续能源研究所 (RASEI) 的研究员。2002 年,Beard 博士在耶鲁大学获得物理化学博士学位,与 Charlie Schmuttenmaer 合作开发时间分辨的 THz 光谱,这是一种非接触式的电荷载流子传输特性探测器。2004 年,他以博士后研究员的身份加入 NREL,与 Arthur Nozik 合作开发提高太阳能转换中初始光能转换效率(主要步骤)的策略。他们研究了胶体半导体纳米晶体(或量子点 [QD])中的多激子生成。 Beard 博士于 2005 年加入 NREL 担任研究科学家,研究 QD 阵列、QD 固体和 QD 太阳能电池,以提高有限的太阳能转换效率,这项工作得到了能源部科学办公室的支持。目前,Beard 博士担任能源混合有机无机半导体中心 (CHOISE) 主任,该中心是科学办公室资助的能源前沿研究中心。该中心汇集了 8 个机构(NREL 和 7 所学术大学)的 18 名高级研究人员。CHOISE 正在学习控制混合半导体中的有机/无机相互作用,以实现前所未有的光电特性。他的研究兴趣包括热载流子利用(减缓热载流子冷却和多激子生成)、纳米结构和混合(有机/无机)系统,用于太阳能转换、光化学能量转换,以及开发用于跟踪能量转换过程的超快瞬态光谱。
摘要 GaN 技术不仅在功率和射频电子领域获得广泛关注,而且还迅速扩展到其他应用领域,包括数字和量子计算电子。本文概述了未来的 GaN 器件技术和先进的建模方法,这些技术和方法可以在性能和可靠性方面突破这些应用的界限。虽然 GaN 功率器件最近已在 15-900 V 级实现商业化,但新的 GaN 器件对于探索高压和超低压功率应用非常有吸引力。在 RF 领域,超高频 GaN 器件正用于实现数字化功率放大器电路,并且可以预期使用硬件-软件协同设计方法将取得进一步的进展。GaN CMOS 技术即将问世,这是实现集成数字、功率和 RF 电子技术的全 GaN 平台的关键缺失部分。尽管目前是一个挑战,但高性能 p 型 GaN 技术对于实现高性能 GaN CMOS 电路至关重要。由于其出色的传输特性和通过极化掺杂产生自由载流子的能力,GaN 有望成为超低温和量子计算电子学的重要技术。最后,鉴于新设备和电路的硬件原型设计成本不断增加,使用高保真设备模型和数据驱动的建模方法进行技术电路协同设计预计将成为未来的趋势。在这方面,物理启发、数学稳健、计算负担较少和预测性的建模方法是必不可少的。凭借所有这些以及未来的努力,我们预计 GaN 将成为电子产品的下一个 Si。
图 1. 生物启发式 2D 视觉系统。生物视觉神经网络的基本组成部分,a) 眼睛可实现生物视觉,b) 大脑中的视觉皮层可实现生物学习。c) 眼睛中的光感受器可实现光传导和适应。视杆细胞可实现暗视,而视锥细胞可实现明视。d) 突触增强或减弱以进行学习或遗忘,例如,当突触前神经元释放谷氨酸神经递质时,通过控制突触后神经元中的 AMPA 受体数量来实现学习或遗忘。e) 示意图和 f) 人工视觉系统的假彩色显微镜图像,该系统由集成有可编程背栅堆栈的 9×1 2D 光电晶体管阵列组成。该平台可实现光传导、视觉适应、突触可塑性、直接学习、无监督再学习以及利用遗忘在动态噪声下学习等功能。 g) 传输特性,即在黑暗环境中不同漏极偏压(𝑉𝑉 𝐷𝐷𝐷𝐷 )下源极至漏极电流(𝐼𝐼 𝐷𝐷𝐷 )随背栅极电压(𝑉𝑉 𝐵𝐵𝐵 )变化的特性,h) 在蓝色发光二极管(LED)不同照明水平下的光转导,i) 光增强引起的学习或设备电导(𝐺𝐺 )的增加,以及 j) 在代表性 2D 光电晶体管中,在 𝑉𝑉 𝐵𝐵𝐵𝐵 = 0 V 时测得的电抑制引起的遗忘或 𝐺𝐺 的减少。
4. Pratik Pataniya、Chetan K. Zankat、MohitTannarana、CK Sumesh、Som Narayan、GK Solanki、KD Patel、VM Pathak、Prafulla K. Jha “由 WSe2 纳米点功能化的纸基柔性光电探测器” ACS Appl. Nano Mater.2,5, 2758-2766 (2019)。5. Abhishek Patel、Pratik Pataniya、GK Solanki、CK Sumesh、KD Patel、VM Pathak “n-VO 2 /n-MoSe 2 异质结二极管的制造、光响应和温度依赖性” Superlattices and Microstructures 130, 160-167 (2019)。 6. CK Sumesh “MX 2(M = Mo,W;X = S,Se)/Si异质结器件的温度相关电子电荷传输特性”材料科学杂志:电子材料;30,4117–4127(2019 年)。7. CK Sumesh “纳米结构太阳能电池中的高效光子管理:2D 层状过渡金属二硫属化物半导体的作用”太阳能材料和太阳能电池 192 16–23(2019 年)。8. CK Sumesh 和 Kinnari Parekh “纳米催化物理化学吸附和有机染料降解”Pramana – 物理学杂志(2019 年)92:87 DOI:10.1007/s12043-019-1760-0(2019 年)。 9. SanniKapatel、CK Sumesh,“两步简便制备 MoS2·ZnO 纳米复合材料作为亚甲蓝(染料)降解的有效光催化剂”15,119–132 (2019)。10. Pratik Pataniya、GK Solanki、Chetan K. Zankat、MohitTannarana、CK Sumesh、KD Patel、VM Pathak,“n-
摘要 - 动静脉移植物(AVG)是接受血液透析(HD)的慢性肾脏疾病(CKD)患者必不可少的救生植入物。但是,由于术后并发症(例如细胞积累)称为再狭窄,血液凝块和感染,这通常是由于发病率和死亡率的主要原因。配备有生物传感器的新一代HD植入物和可用于检测特定病理参数并报告AVGS的通畅性的无线功率和遥测系统的多播天线对CKD进行了变化。我们的研究提出了用于HD监测应用的紧凑双带植入天线。它以1.4和2.45 GHz运行,用于无线功率传递和生物测定目的。当前大小为5×5×0.635 mm 3的微型天线3具有较宽的带宽(在1.4-GHz带时为300 MHz,在2.45-GHz频带下为380 MHz),并且在两个共振频率下匹配良好的障碍物。此外,在三层同质幻影和现实的人体模型中分别进行模拟。在猪肉中评估所提出的天线的测量。所测量的天线原型的结果与模拟的原型紧密协调,并分析了猪肉肉中不同比例的脂肪组织的影响,以验证天线对接触介质的敏感性。还分析了特定的吸收率(SAR)和链路预算计算。最后,通过采用一对NRF24L01无线收发器来实现和可视化所提出的天线的无线生物测量功能,可持续和稳定的无线数据传输特性以2 Mb/s的高数据速率显示,最高为20 cm/s。
传感策略正在发展越来越多地集中在超低检测阈值和高度选择性设备上。这些性能可以通过纳米技术来启用,这要归功于印度定义,自上而下的结构[1-3]或化学/生化获得的,即自下而上的构造[4-6]。可以用基于石墨烯的纳米结构来表示自上而下和自下而上的方法之间的一种桥梁。石墨烯是一种二维材料,该材料由六边形晶格结构中的单层碳原子组成[7]。Andre Geim和Konstantin Novoselov于2004年隔离并描述了石墨烯,这一成就于2010年获得了诺贝尔物理奖[8]。 使用关键字“石墨烯”在2023年11月进行的一项科学数据库研究产生了203,000多篇论文,其中包括大约10,000篇评论论文。 材料的特殊特性,已在不可数的出色评论中进行了详细描述(例如,参见[9-11])允许其在几乎无限的应用中使用,涵盖了当今人类活动的不同技术和科学相关领域。Andre Geim和Konstantin Novoselov于2004年隔离并描述了石墨烯,这一成就于2010年获得了诺贝尔物理奖[8]。使用关键字“石墨烯”在2023年11月进行的一项科学数据库研究产生了203,000多篇论文,其中包括大约10,000篇评论论文。材料的特殊特性,已在不可数的出色评论中进行了详细描述(例如,参见[9-11])允许其在几乎无限的应用中使用,涵盖了当今人类活动的不同技术和科学相关领域。在一些最成功和/或研究的中,有可能提到一般的电子和光电子,对于这些电子和光电子,石墨烯的存在及其衍生物可以改善设备的电子传输[12-15];与能量相关的应用[16,17],其中再次,石墨烯的电子传输能力有助于改善例如电池和电容器的整体特性;催化[18,19],该领域利用了石墨烯/石墨烯衍生物所实现的超高表面积及其增强的电子传输特性,以提高化学反应的整体产量;药物[20-23],其中石墨烯衍生物(特别是石墨烯氧化物)与生物分子相互作用的能力用于实施药物递送,提供用于热破坏癌细胞的选择性电气吸收,用于成像以及许多其他生物医学目的[24,25];复合材料的机械增强和/或复合材料的功能修饰,其中通常通过创建能够承受非常的材料来利用石墨烯衍生物的特殊机械电阻。中,有可能提到一般的电子和光电子,对于这些电子和光电子,石墨烯的存在及其衍生物可以改善设备的电子传输[12-15];与能量相关的应用[16,17],其中再次,石墨烯的电子传输能力有助于改善例如电池和电容器的整体特性;催化[18,19],该领域利用了石墨烯/石墨烯衍生物所实现的超高表面积及其增强的电子传输特性,以提高化学反应的整体产量;药物[20-23],其中石墨烯衍生物(特别是石墨烯氧化物)与生物分子相互作用的能力用于实施药物递送,提供用于热破坏癌细胞的选择性电气吸收,用于成像以及许多其他生物医学目的[24,25];复合材料的机械增强和/或复合材料的功能修饰,其中通常通过创建能够承受非常
埃丝特·竹内博士是纽约州立大学杰出教授,在布鲁克海文国家实验室和石溪大学担任联合职务。竹内博士是美国能源部耗资 1000 万美元的能源前沿研究中心中尺度传输特性中心的主任,她正在领导一项研究,研究具有强大能量和使用寿命能力的替代性环保电池系统。自 2012 年来到石溪大学以来,她的工作彻底改变了电池化学和技术,并让她被任命为首任威廉和简·纳普能源与环境主席。竹内博士和她的顶尖研究人员团队以及石溪大学的研究生(拥有化学、材料科学、电气工程和物理学背景)希望通过研究所有能量的两个最基本产物——功和热,找到新的储能替代品。这项跨学科合作研究旨在开发可靠的高功率储能,目标是帮助我们充分利用可再生能源,促进地球更加可持续发展。竹内博士拥有 150 多项美国专利。她因开发出如今植入式心脏除颤器所采用的电池技术而受到认可。奥巴马总统授予她美国技术成就的最高荣誉——国家技术创新奖章。此外,她还是著名的美国国家工程院和美国发明家名人堂的入选者,也是美国医学和生物工程研究所和电化学学会的会员。竹内博士在宾夕法尼亚大学获得化学和历史学士学位,在俄亥俄州立大学获得有机化学博士学位。她在北卡罗来纳大学教堂山分校和布法罗大学完成了博士后工作。在担任学术职务之前,竹内博士在 Greatbatch Inc. 工作了 20 多年。
摘要:维度在有机半导体的电荷传输特性中起重要作用。尽管三维半导体(例如Si)在无机材料中很常见,但在三维有机聚合物中赋予了电导率,这是有挑战性的。现在,使用无催化剂的Diels-Alder Cycloadition聚合合成了三维P-偶联的多孔有机聚合物(3D P-POP),然后提出了酸促进的芳香化。具有801 m 2 g 1的表面积,在整个碳主链中完全结合,在用I 2蒸气处理后的6(2)10 4 SCM 1的电导率为6(2)10 4 SCM 1,3D P-POP是新型永久性多孔3D 3D有机半导体的首位成员。P孔有机聚合物(POP)由于其永久性孔隙度,可调孔径,结构模块化,大表面积和高理化稳定性,因此引起了人们的注意。In partic- ular, POPs [1] with extended p -electron conjugation are attractive for their desirable properties in high electron mobility and electrical conductivities, allowing for low-cost and lightweight organic semiconductor applications such as light-emitting diodes, solar cells, field-effect transistors, organic lasers, battery electrodes, and photocatalysis.[2]迄今为止,已经有许多二维(2D)P-共轭流行音乐,例如用于太阳能电池应用的基于噻吩的CMP [3]和I 2掺杂的JUC-Z2 [4],用于电化学离子传感,以及对2D POROFE for PhotemoConductors sppped sppped sppped spppations secting secting secting secting secting s extrochemical离子传感。[5]通过创建具有相似电导率但较高表面积和较低密度的3D聚合物来增加电荷传输的维度,这可能对许多应用(例如催化和气体传感)有益。[6]的确,3D POP的骨干通常合并SP 3碳中心,[7]破坏了P -Conju-
粒子和细胞。2,3 在传感原理中,单个分析物在电诱导下通过一个充满电解质的小孔(图 1,左图)会导致电解质离子阻塞而导致电阻瞬时可检测到的增加,这在 DNA 测序中可以区分非常相似的核碱基。4 单纳米孔研究通常受到生物通道和孔的启发,它们具有极高的离子选择性和通量,另外还可用作离子信号的开关、放大器和中继系统。5 因此,纳米孔用于制备模拟生物通道特性和控制溶液中离子传输的系统。6–9 此外,单纳米孔提供了一个模型系统来揭示纳米限制引起的新物理和化学现象、传输特性和传输模式。10–12 研究离子、小有机分子、折叠蛋白质、DNA 和 RNA 以及延伸有机聚合物和生物聚合物的传输。由于单纳米孔在生物传感和仿生学中的应用,人们主要在水性和明确定义的溶液中探测单纳米孔。根据应用的不同,单纳米孔的开口直径可为 0.3 至数百纳米,长度可从单个原子层到微米级。多孔膜在技术上与单孔系统截然不同。多孔膜的应用可能需要数千平方米的膜。多孔膜每年创造 100 亿美元的市场,在水基和非水过滤、气体分离、燃料电池和电池组以及包括小分子和折叠蛋白质在内的生物材料纯化(用于食品加工、生物技术和生物医学)中必不可少。15–18 在这些应用中,膜用作选择性屏障,允许一种或多种分子通过,同时主要将其他分子保留在表面上
