1。引言硅光子设备由于其吸引人的特性而变得越来越流行。小尺寸,较大的折射率对比度和CMOS兼容性是硅光子设备的特性,它们使其成为多个行业的选择设备 - 电信,生物医学等[1,2]。使用最广泛的硅光子设备组件之一是Mach-Zehnder干涉仪(MZI)。在硅平台上实施的Mach-Zehnder干涉仪是各种应用的关键元素,从电信(用于光子波导开关和光子调制器)到感应,神经网络,量子和信号处理的关键元素[3-11]。MZI的效用源于其干涉特性,这是通过在MZI的两个臂之间创建相对相移来实现的。使用相位变速器或通过使MZI的两个臂的光路长度不平等来实现此相移。MZI配置,其中MZI的两个臂都不相等,称为MZI不平衡。不平衡的MZI已用于位移传感[12],气体传感[13],模式切换[14]和调制[15]。在本文中,我们展示了我们建模,模拟和随后制造的MZI设计不平衡的设计。我们检查了几种不平衡的MZI设计,并分析了设备的仿真和实验传输特性。我们阐明了波导建模的过程并进行了分析,以补偿制造变化并详细介绍了一些数据分析。
WP 9.0:协调 WP 9.1:能源应用材料的创新合成 T9.1.1. 提高材料催化效率的策略 T9.1.2. 具有改进的化学物理性质的材料工程 T9.1.3. 超分子和混合纳米结构系统的自组装 T9.1.4. 在非标准、恶劣和极端条件下操作的材料 T9.1.5. 多功能、复合和低维材料 WP 9.2:可持续材料的高效制备 T9.2.1. 绿色制备协议和材料 T9.2.2 可回收材料的设计策略 T9.2.3 循环经济方法中先进材料开发和使用的 LCA 和新规定 WP 9.3:能源应用材料的新生产工艺 T9.3.1 创新制造、纳米制造和固结工艺 T9.3.2表面功能化、界面处理、阵列 T9.3.3 延长材料寿命的处理方法 WP 9.4:材料特性和测试 T9.4.1:先进的结构和形态表征技术 T9.4.2:光学、电化学、电子特性 T9.4.3:磁、热和传输特性 T9.4.4:材料的原位、原位表征和测试 WP 9.5:材料开发的高级计算模型 T9.5.1 用于预测材料结构和特性的计算方法和建模 T9.5.2 用于提高材料效率和性能的高级计算方法 WP 9.6 传播和通信
在本研究中,我们提出了一种大幅提高 LPS 合成的 Bi 2 Te 3 基材料的热电性能的策略。通过对添加 SiC 纳米粒子(20 纳米)的 LPS 合成的 Bi 2 Te 3 样品进行低温热处理,在 340 K 时实现了 1.05 的高峰值 ZT。该值几乎是之前报道的 LPS 合成的 Bi 2 Te 3 在 450 K 时的 ZT 0.56 的两倍。性能的大幅提高可部分归因于随后的热处理,这是一种控制晶格缺陷和载流子迁移率的有效方法。36,37 除了热处理之外,添加 SiC 纳米粒子进一步降低了晶格热导率,同时保留了电子特性,从而进一步提高了 ZT。 38 – 43 此外,从这项工作中还可以看出,小的 SiC 纳米颗粒分散在 (Bi,Sb) 2 Te 3 材料中比大纳米颗粒更能有效地提高其热电性能。总的来说,从这项工作中得出的两个关键见解可以广泛应用于其他材料系统。首先,这项工作中报道的 LPS 代表了热电合成中高温工艺的一种能量上和商业上有吸引力的替代方案。其次,与化学掺杂不同,使用小纳米颗粒 (即 SiC) 掺杂的纳米复合材料可以引入到其他材料系统中,而不会严重影响它们现有的化学结构,从而影响它们的能带结构和传输特性。
Sb 2 S 3 是一种很有前途的环保半导体,可用于高性能太阳能电池。但是,与许多其他多晶材料一样,Sb 2 S 3 受到非辐射复合和晶界 (GB) 载流子散射的限制。这项工作表明,通过在 Sb 2 S 3 沉积的前体溶液中加入适量的 Ce 3 +,Sb 2 S 3 薄膜中的 GB 密度可以显著从 1068 ± 40 nm μ m − 2 降低到 327 ± 23 nm μ m − 2。通过对结构、形貌和光电特性的广泛表征,并辅以计算,我们发现一个关键因素是在 CdS/Sb 2 S 3 界面处形成一层超薄 Ce 2 S 3 层,这可以降低界面能并增加 Sb 2 S 3 和基底之间的粘附功,以促进 Sb 2 S 3 的异质成核,并促进横向晶粒生长。通过减少晶界和/或 CdS/Sb 2 S 3 异质界面的非辐射复合,以及改善异质结处的载流子传输特性,这项工作实现了高性能 Sb 2 S 3 太阳能电池,其功率转换效率达到 7.66%。开路电压 (V OC ) 达到了惊人的 796 mV,这是迄今为止报道的 Sb 2 S 3 太阳能电池的最高值。这项工作提供了一种同时调节 Sb 2 S 3 吸收膜的成核和生长的策略,以提高设备性能。
尽管有许多效果来探索H-BN底物上石墨烯的电子结构,但H-BN层在石墨烯对吸附有毒气体分子的吸附行为上的含量仍然很少了解。在此,我们使用了基于密度功能理论(DFT)22,23的第一个原理方法来研究结构稳定性,以及对有毒气体分子吸附的石墨烯/H-BN异质结构的电子和电子传输性能。首先,我们对每个单层进行了DFT优化计算,然后校准了这些异质结构的能量效果,这是这两层之间的层间距离的函数,以获得最轻松的几何形状contriric contriric contration guration guration guration guration guration guration guration guration guration guration guration guration。将最稳定结构的电子性质与单层的电子特性进行了比较。然后,我们研究了原始石墨烯和石墨烯/H-BN的吸附机制,包括有毒气体的吸附,包括CO 2,CO,NO和NO 2。为了提高这些电子计算的可靠性,我们考虑了这些底物与吸附分子之间的VDW相互作用。为了评估石墨烯/H-BN异质结构作为晚期有毒气体传感器的选择性,我们还采用了非平衡性Green的功能形式,使用密度功能方法来计算这些吸附的系统中的电子传输特性。
尽管铯铅卤化钙钛矿 (CsPbX 3 ,X = Cl、Br 或 I) 纳米晶体 (PNC) 因其出色的光学和传输特性而迅速发展用于多种光电应用,但它们的结构稳定性低,尤其是在环境条件下,限制了它们的设备制造和商业化。在这项工作中,我们开发了一种新方法来保护这些纳米晶体的表面,从而提高了化学稳定性和光学性能。该方法基于将 CsPbX 3 NC 封装到具有内在微孔的聚酰亚胺 (PIM-PI) 中,4,4 ′-(六氟异丙基亚甲基)二邻苯二甲酸酐与 2,4,6-三甲基-间苯二胺 (6FDA- TrMPD) 发生反应。 6FDA-TrMPD 作为保护层可以有效地将 NC 与空气环境隔离,从而提高其光学和光致发光稳定性。更具体地说,比较用聚合物处理的 NC 与 168 小时后的合成纳米晶体,我们观察到聚合物处理前后 NC 的 PL 强度分别下降了 70% 和 20%。此外,含有聚合物的 PNC 薄膜比合成的纳米晶体显示出更长的激发态寿命,表明处理过的 PNC 中的表面陷阱态显著降低。化学和空气稳定性以及光学行为的增强将进一步提高 CsPbBr 3 PNC 的性能,从而产生有前景的光学器件并为其大规模生产和实施铺平道路。
有机场效应晶体管 (OFET) 是有机电子电路的核心单元之一,OFET 的性能在很大程度上取决于其介电层的特性。有机聚合物,如聚乙烯醇 (PVA),由于其固有的柔韧性和与其他有机成分的天然兼容性,已成为 OFET 备受关注的介电材料。然而,诸如滞后、高亚阈值摆幅和低有效载流子迁移率等不尽人意的问题仍然大大限制了聚合物介电 OFET 在高速、低压柔性有机电路中的实际应用。这项工作开发了一种使用超临界 CO 2 流体 (SCCO 2 ) 处理 PVA 介电体的新方法,以获得性能卓越的聚合物介电 OFET。 SCCO 2 处理可以完全消除 OFET 传输特性中的滞后现象,同时还可以显著降低器件亚阈值斜率至 0.25 V/dec,并将饱和区载流子迁移率提高至 30.2 cm 2 V − 1 s − 1 ,这两个数字对于柔性聚合物电介质 OFET 来说都是非常可观的。进一步证明,与有机发光二极管 (OLED) 耦合后,SCCO 2 处理的 OFET 能够在快速开关速度下运行良好,这表明通过这种 SCCO 2 方法可以实现聚合物电介质 OFET 的优异开关行为。考虑到 OFET 的广泛和重要应用,我们预见这种 SCCO 2 技术将在有机电子领域具有非常广泛的应用,尤其是对于高刷新率和低压柔性显示设备。
1纳米科学技术中心,奥兰多市中心大学 - 美国佛罗里达州32826。 2 Creol,佛罗里达州中部佛罗里达大学的光学与光子学院,美国佛罗里达州32816,美国。 3佛罗里达州中部佛罗里达大学化学系32816,美国4材料科学与工程系,佛罗里达州中部佛罗里达大学,奥兰多,佛罗里达州,佛罗里达州32816,美国。 5物理系,佛罗里达州中部奥兰多市,佛罗里达州32816,美国。 有机无机卤化物钙钛矿量子点(PQD)构成了用于光电设备应用的吸引人的材料,因为它们的独特特性,例如宽带宽度吸收,高灭绝系数和长的电子孔 - 孔 - 孔 - 孔孔扩散长度。 但是,它们的电荷传输特性不如石墨烯。 另一方面,石墨烯的电荷产生效率太低,无法在许多光电应用中使用。 目前无法使用有效的光生成和快速电荷传输的石墨烯-PQD(G-PQD)上层建筑。 在本文中,我们使用新型缺陷介导的生长机制直接从石墨烯晶格中生长PQD制备的G-PQDS上层结构,展示了超薄的光晶体管和光子突触。 我们的模拟和实验结果表明,从石墨烯晶格中生长的PQD可以提供有效的途径,将光激发电荷直接传输到石墨烯,从而同步有效的电荷产生和在单个平台上同步。 但是,单层的石墨烯仅吸收2.3%的事件可见光11。 这些1纳米科学技术中心,奥兰多市中心大学 - 美国佛罗里达州32826。2 Creol,佛罗里达州中部佛罗里达大学的光学与光子学院,美国佛罗里达州32816,美国。3佛罗里达州中部佛罗里达大学化学系32816,美国4材料科学与工程系,佛罗里达州中部佛罗里达大学,奥兰多,佛罗里达州,佛罗里达州32816,美国。5物理系,佛罗里达州中部奥兰多市,佛罗里达州32816,美国。 有机无机卤化物钙钛矿量子点(PQD)构成了用于光电设备应用的吸引人的材料,因为它们的独特特性,例如宽带宽度吸收,高灭绝系数和长的电子孔 - 孔 - 孔 - 孔孔扩散长度。 但是,它们的电荷传输特性不如石墨烯。 另一方面,石墨烯的电荷产生效率太低,无法在许多光电应用中使用。 目前无法使用有效的光生成和快速电荷传输的石墨烯-PQD(G-PQD)上层建筑。 在本文中,我们使用新型缺陷介导的生长机制直接从石墨烯晶格中生长PQD制备的G-PQDS上层结构,展示了超薄的光晶体管和光子突触。 我们的模拟和实验结果表明,从石墨烯晶格中生长的PQD可以提供有效的途径,将光激发电荷直接传输到石墨烯,从而同步有效的电荷产生和在单个平台上同步。 但是,单层的石墨烯仅吸收2.3%的事件可见光11。 这些5物理系,佛罗里达州中部奥兰多市,佛罗里达州32816,美国。有机无机卤化物钙钛矿量子点(PQD)构成了用于光电设备应用的吸引人的材料,因为它们的独特特性,例如宽带宽度吸收,高灭绝系数和长的电子孔 - 孔 - 孔 - 孔孔扩散长度。但是,它们的电荷传输特性不如石墨烯。另一方面,石墨烯的电荷产生效率太低,无法在许多光电应用中使用。目前无法使用有效的光生成和快速电荷传输的石墨烯-PQD(G-PQD)上层建筑。在本文中,我们使用新型缺陷介导的生长机制直接从石墨烯晶格中生长PQD制备的G-PQDS上层结构,展示了超薄的光晶体管和光子突触。我们的模拟和实验结果表明,从石墨烯晶格中生长的PQD可以提供有效的途径,将光激发电荷直接传输到石墨烯,从而同步有效的电荷产生和在单个平台上同步。但是,单层的石墨烯仅吸收2.3%的事件可见光11。这些厚度小于20 nm的光晶体管使用该G -PQD上层建筑制备的响应性出色的响应性为1.4×10 8 AW -1,在430 nm处的特异性检测性为4.72×10 15 Jones。此外,上层建筑的光辅助记忆效应使我们能够以36.75 PJ/ SPIKE的低能消耗来证明光子突触行为,这与神经形态计算高度相关。我们通过在机器学习的帮助下证明面部识别来揭示其在神经形态计算中的应用。我们预计PQD上层建筑将在开发高效和超薄的光电设备方面加强新的方向。引言石墨烯是电子和光电应用的理想材料,这是由于其广泛的光谱带宽,出色的运输属性具有很高的迁移率(电子迁移率> 15000 cm2Åv-1·S -1),在环境条件下的特殊稳定性和出色的灵活性稳定性和出色的灵活性1-6。已经开发了大量的复合材料和设备,用于在能量收集和存储中应用,光电遗传学和晶体管7-10。迄今为止,石墨烯光电探测器的响应性仅限于10 -2 AW -1。
摘要:量子材料具有丰富的量子态和相,是正在兴起的第二次量子演化的主要力量。发现和理解量子物质的功能相并将其转化为技术进步至关重要。在本次演讲中,我将重点介绍高质量异质结和超晶格的开发和研究,以及探索这些新型材料平台的独特量子传输特性。我将首先展示如何在最小化无序和低电子温度下触发传统 GaAs/AlGaAs 界面中的量子向列相到近晶相的转变。然后,我将展示几种使用新型范德华 (vdW) 积分方法的独特方法,其中可以通过 vdW 相互作用在各种系统之间实现原子级平坦界面,并且可以扩展到形成高阶超晶格结构的多层。它们使一系列量子传输研究成为可能,包括观察铅卤化物钙钛矿中的弱局域化效应和铁电大极化子的形成,以及手性分子插层超晶格中的稳健自旋隧穿。受这些发现的启发,我还将讨论范德华积分为创造具有可设计化学成分、维数、层间距离和结构图案的新型人工量子固体带来的激动人心的机会,这为基础研究和量子技术开辟了全新的平台。
摘要:典型的硫化硫酸盐钙钛矿BAZRS 3,其特征在于其直接带隙,异常强大的光收集能力和良好的载体传输特性,为有希望的光伏材料提供了基本的先决条件。这启发了BAZRS 3以薄膜的形式合成,使用溅射和快速的热处理,旨在用于将来的光电应用设备制造。使用X射线吸收光谱(XAS)和X射线衍射(XRD)的短距离和远程结构信息的组合,我们已经阐明了如何从BA,ZR和S原子的随机网络开始,热处理诱导了BAZR 3的结晶和生长,并诱导了对bazr的结晶和生长的影响,并构成了对观测的照片的影响。我们还使用硬X射线(HAXPES)和传统的AlKα辐射的深度依赖光电光谱(PES)结合了电子结构的描述并证实了表面材料化学。从BAZRS 3薄膜的光条间隙的知识中,在900°C的最佳温度下合成,以及我们对费米水平的价带边缘位置的估计,可以得出结论,这些半导体膜本质上是固有的,具有较小的n -type特征。对BAZRS的生长机理和电子结构的详细理解3薄膜有助于铺平其在光伏应用中利用的道路。关键字:粉红色的perovskites,bazrs 3,exafs,xrd,结构 - 属性相关,光电光谱,haxpes■简介
