1。引言硅光子设备由于其吸引人的特性而变得越来越流行。小尺寸,较大的折射率对比度和CMOS兼容性是硅光子设备的特性,它们使其成为多个行业的选择设备 - 电信,生物医学等[1,2]。使用最广泛的硅光子设备组件之一是Mach-Zehnder干涉仪(MZI)。在硅平台上实施的Mach-Zehnder干涉仪是各种应用的关键元素,从电信(用于光子波导开关和光子调制器)到感应,神经网络,量子和信号处理的关键元素[3-11]。MZI的效用源于其干涉特性,这是通过在MZI的两个臂之间创建相对相移来实现的。使用相位变速器或通过使MZI的两个臂的光路长度不平等来实现此相移。MZI配置,其中MZI的两个臂都不相等,称为MZI不平衡。不平衡的MZI已用于位移传感[12],气体传感[13],模式切换[14]和调制[15]。在本文中,我们展示了我们建模,模拟和随后制造的MZI设计不平衡的设计。我们检查了几种不平衡的MZI设计,并分析了设备的仿真和实验传输特性。我们阐明了波导建模的过程并进行了分析,以补偿制造变化并详细介绍了一些数据分析。
主要关键词