美国国家标准与技术研究所正在研究一种原型低温热传递标准 (CTTS),作为低信号电平下的潜在交流-直流传递标准 [1, 2]。最近,我们用 HTS 传输线改造了低温标准,以提高其性能。电子低温设备的一个常见问题是将直流和交流信号从室温参考平面传送到低温设备。这对于 errs 来说尤其令人担忧,因为校准的仪器必须处于室温下。由于大多数金属和合金的电导率和热导率成正比,因此在试图实现低电阻和低热导率时会出现困境。对于超导体,由于消除了电子对该值的贡献,临界温度 (Tc) 以下的热导率可能会急剧下降。就超导状态下的电性能而言,直流电阻降至零,载流能力高,交流传输特性在感兴趣的频率范围内足够。我们实施了由高质量结晶薄膜 YBa2Cu)Ox (YBCO) 制成的共面传输线。YBCO 的临界温度接近 90 K,因此在 77 K 时它已进入超导状态。我们使用此线在低温恒温器的 77 K 和 4 K 级之间传输电信号。
低温电子学对许多任务关键型应用至关重要,例如量子计算机和量子传感接口 [1]、太空探索电子设备 [2] 和高性能低温服务器 [3]。计算机辅助设计技术 (TCAD) 为探索低温电子学的设计空间提供了一种非常经济有效的方法,而且最近在低温电子模拟的校准、建模和仿真方法方面取得了巨大进展 [4-7]。然而,低温从头算量子传输模拟对于研究 LG < 20 nm 的器件,特别是其亚阈值行为非常重要,但仍然很困难,尚未系统地研究。众所周知,MOSFET 的 SS 不遵循玻尔兹曼统计 [4-9]。为了了解其起源,需要一个强大的从头算传输模拟装置。据我们所知,文献中还没有关于低温传输的从头算模拟。目前仅开展了使用非平衡格林函数 (NEGF) 的研究 [10] 。本文成功利用从头算模拟研究了 LG = 10 nm 纳米线在低至 3 K 温度下的传输特性。研究了模拟技术,以实现更快、更稳健的模拟。然后研究了纳米线的低温泄漏特性。
摘要:使用Ab始于从头算计算,研究了优化的几何形状,以及钝化边缘扶手椅抗氨基烯纳米纤维(ASBNR)的电子和传输特性。由于量子限制,当宽度分别从5 nm降低到1 nm时,带隙的大小可以从1.2 eV到2.4 eV(间接)调节。这项研究的重点是宽度为5 nm(5-ASBNR)的纳米容器,因为它的制造潜力较高,并且可以接受电子应用的带型带。应用单轴压缩和拉伸菌株会减少5-ASBNR膜的带隙。当引入超过4%以上的拉伸应力时,观察到直接带隙转变的间接转换。此外,当引入高于9%的压缩应变时,可以观察到半金属行为。通过施加压缩(拉伸)应变,孔(电子)有效质量降低,从而增加电荷载体的迁移率。研究表明,可以通过在丝带上施加拉伸或压缩应变来调节基于ASBNR的纳米电子设备的载体迁移率。关键字:2D材料,偶然,纳米式,压缩和拉伸应变,带状结构,状态密度■简介
摘要。在这项工作中,我们通过实验研究了电应力对 T = 2 K 温度下 p 型硅 MOSFET 内单空穴传输特性可调谐性的影响。这是通过监测通道氧化物界面处三个无序量子点的库仑阻塞来实现的,众所周知,由于它们的随机起源,这些量子点缺乏可调谐性。我们的研究结果表明,当施加 -4 V 至 -4.6 V 之间的栅极偏压时,附近的电荷捕获会增强库仑阻塞,从而导致更强的量子点限制,在执行热循环重置后可以恢复到初始设备状态。然后重新施加应力会引起可预测的响应,量子点充电特性会发生可重复的变化,并且会观察到高达 ≈ 50% 的持续充电能量增加。我们在栅极偏压高于 -4.6 V 时达到了阈值,由于大规模陷阱生成导致设备性能下降,性能和稳定性会降低。结果不仅表明应力是增强和重置充电特性的有效技术,而且还提供了有关如何利用标准工业硅器件进行单电荷传输应用的见解。
太阳能转换过程不仅存在于太阳能电池中,也存在于光催化中,涉及太阳光收集和光激发电荷载流子分离/传输。[8,9] 异质结构是将具有不同性质的材料集成在一起,通常可以收集来自多种组分的广泛太阳光,并且受益于异质界面形成的内部电场而具有显著的光激发电荷分离/传输特性。[10] 因此,探索合适的组分来构建异质结构是提高太阳能转换效率的一种有效且简便的策略。如今,二维材料由于其高比表面积、[11] 大量的表面暴露原子、[12] 以及优异的机械、光学和电子性能,在光电器件、催化和太阳能转换领域引起了极大的研究兴趣。[13,14] 得益于层状结构特性,二维材料易于构建成异质结构。通常,二维异质结构包括垂直异质结构(其中各种二维材料层垂直堆叠)[15] 和横向异质结构(其中多个二维材料横向无缝缝合)。[16] 目前报道的二维异质结构大多
针对机载光电系统探测性能难以评估的问题,本文提出了一种红外与微光传感器目标信息融合检测概率的定量计算方法,从目标与背景的辐射特性、探测器的传输特性和成像特性3个方面分析了影响目标检测概率的因素,建立了目标信息融合检测概率计算模型,基于模糊贝叶斯网络理论,根据机载光电传感器目标特点及威胁效果,给出了目标威胁评估的模糊贝叶斯网络模型。实验结果表明,当融合质量因子小于1时,融合图像的质量与源图像相比有所下降;通过贝叶斯网络算法得到了目标威胁,对威胁评估过程的仿真证明了模型的有效性和结果的可靠性。所提出的方法可以计算机载光电系统图像融合的目标检测概率,并对目标威胁进行评估。 (2017年3月30日收到;2017年10月10日接受)关键词:目标信息融合,检测概率,威胁评估,机载光电
针对机载光电系统探测性能难以评估的问题,本文提出了一种红外与微光传感器目标信息融合检测概率的定量计算方法,从目标与背景的辐射特性、探测器的传输特性和成像特性3个方面分析了目标检测概率的影响因素,建立了目标信息融合检测概率计算模型,基于模糊贝叶斯网络理论,根据机载光电传感器目标特点及威胁效果,给出了目标威胁评估的模糊贝叶斯网络模型。实验结果表明,当融合质量因子小于1时,融合图像的质量与源图像相比有所下降;通过贝叶斯网络算法得到了目标威胁,对威胁评估过程的仿真证明了模型的有效性和结果的可靠性。本文提出的方法可以计算机载光电系统图像融合的目标检测概率,并对目标威胁进行评估。(2017年3月30日收到;2017年10月10日接受) 关键词:目标信息融合,检测概率,威胁评估,机载光电
摘要:Macca Carbon(MC)粉末是一种源自澳洲坚果培养的生物质,它通过熔融和随后的熔融融化操作融合到低密度聚乙烯(LDPE)中。光学显微镜,扫描电子显微镜,差异扫描量热法,机械性能,机械性能,FIR发射功率,屏障特性,传输特性,抗菌活性测定和储存测试用于评估制造的LDPE/MC Composite -Composite -Composite -Composite -Composite -Composite Biosebosite blimicicalessseys antymicicales andimicimicial sepplications。复合膜的物理特性和抗菌活性与所使用的MC粉末量显着相关。LDPE/MC复合纤维中的MC粉末含量越高,FIR排放能力越好。仅按重量为0.5%的MC粉末显示出足够的基本效果特征,抗菌活性和储存性能,使生菜和草莓分别保持新鲜7天以上,在冰箱之外。这项研究表明,由MC粉制成的FIR复合材料是一种独特而潜在的包装材料,用于将来在食品行业中应用。
背景。在恒星对流区中,运动粘度与热扩散率之比,即普朗特数,远小于 1。目的。这项工作的主要目标是研究对流流动和能量传输的统计数据与普朗特数的关系。方法。采用笛卡尔几何中可压缩非旋转流体动力对流的三维数值模拟。对流区 (CZ) 位于两个稳定分层的层之间。在大多数情况下,熵波动扩散的主要贡献来自亚网格尺度扩散率,而平均辐射能量通量则由采用 Kramers 不透明度定律的扩散通量介导。在这里,我们分别研究上流和下流的统计和传输特性。结果。体积平均均方根速度随普朗特数的减小而增加。同时,下行流的填充因子会降低,导致在较低的普朗特数下,下行流平均会更强。这导致对流过冲对普朗特数有很强的依赖性。速度功率谱不会随着普朗特数的变化而发生明显变化,但对流层底部附近除外,因为那里垂直流占主导地位更为明显。在最高雷诺数下,速度功率谱与 Bolgiano-Obukhov k − 11 / 5 的兼容性比与 Kolmogorov-Obukhov k − 5 / 3 的兼容性更好
我们对不同几何结构(从一维链、准一维梯形到二维方晶格)中量子和经典自旋模型中的自旋和能量动力学进行了全面比较。我们重点研究形式上无限温度下的动力学,特别考虑局部密度的自相关函数,其中时间演化由量子情况下的线性薛定谔方程或经典力学情况下的非线性哈密顿运动方程控制。虽然在一般情况下,量子动力学和经典动力学之间不能期望有定量一致性,但我们对自旋 1/2 系统(最多 N = 36 个晶格点)的大规模数值结果实际上违背了这一预期。具体来说,我们观察到所有几何都具有非常好的一致性,这对于准一维或二维的非可积量子模型来说是最好的,但在可积链的情况下仍然令人满意,至少如果传输特性不受大量守恒定律的支配。我们的研究结果表明,经典或半经典模拟提供了一种有意义的策略来分析量子多体模型的动力学,即使在自旋量子数 S = 1 / 2 很小且远离经典极限 S →∞ 的情况下也是如此。
