目前的深度学习算法可能无法在大脑中运行,因为它们依赖于权重传输,即前向路径神经元将其突触权重传输到反馈路径,而这种方式在生物学上可能是不可能的。一种称为反馈对齐的算法通过使用随机反馈权重实现了没有权重传输的深度学习,但它在困难的视觉识别任务上表现不佳。在这里,我们描述了两种机制——一种称为权重镜像的神经回路和 1994 年 Kolen 和 Pollack 提出的算法的修改——这两种机制都允许反馈路径即使在大型网络中也快速准确地学习适当的突触权重,而无需权重传输或复杂的布线。在 ImageNet 视觉识别任务上进行测试,这些机制的学习效果几乎与反向传播(深度学习的标准算法,使用权重传输)一样好,并且它们优于反馈对齐和另一种较新的无传输算法符号对称方法。
通过物质对电子传输的抽象模拟在许多应用中使用。其中一些需要在计算时间和在广泛的电子能量中准确的模型。对于某些应用,例如放射化学和放射疗法,金属纳米颗粒增强了,希望考虑相对较低的能量电子。,我们已经在固体金属介质中实施了一个物理模型,以符合上述两个要求的固体金属介质中的低能。本文的主要目标是介绍我们的蒙特卡洛模拟的理论框架,其应用于金属金属,并与电子束照射的金箔可用数据进行了广泛的比较,用于从几个EV到90 KEV的弹丸能量。尤其是我们计算了二级电子排放,以评估我们在50 eV以下的能量时代码的准确性。即使低能电子的向后发射产率被系统地低估,也与实验达成了密切的一致性。尽管如此,在存在金纳米颗粒的情况下,诸如纳米尺度法或放射化学等纳米级应用的质量和数值效率令人鼓舞。
开放存取本文采用知识共享署名4.0国际许可证,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并表明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可证中,除非在资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,且您的预期用途不被法定规定允许或超出了允许的用途,您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
现行立法和监管框架未能完全解决这些潜在的漏洞。现有法律,例如 2024 年《保护美国人的数据免受外国对手侵害法案》(PADFAA)、CFIUS 当局和先前的行政命令,5 侧重于针对特定交易的审查或针对特定行业的控制,但缺乏对数据交易的广泛限制。新规则通过限制与关注国家和涵盖人员的某些敏感批量数据交易来填补这一空白,建立了司法部国家安全部门(“NSD”)为此类转移颁发许可证、提供咨询意见和执行特定安全缓解要求和豁免的流程。该规则将在 90 天内生效,部分内容将在 270 天内逐步推出。
摘要:无线充电是一种使用电磁场通过电磁诱导传输能量的一种充电方法。通过相互诱导的过程在设备(发射器和接收器)之间传递能量。来自太阳能的功率作为输入发射器电感线圈的输入,接收器电感线圈接收电源并将其转换为电流以给电池充电。太阳能电池板将太阳能转换为电力。他们使用光电效应的概念,当光落在太阳能电池板上时电子的发射。太阳能电池板由硅细胞组成,硅具有原子编号14。当光落在硅细胞上时,硅的最外部电子即两个电子设置为运动。这引发了电流。硅具有两种不同的细胞结构:单晶和多晶单晶太阳能电池板是由一个大硅块制造的,并以硅晶片格式制成。多晶太阳能电池也是硅细胞,它们是通过将多个硅晶体融合在一起而产生的。使用吸引人的回响的无线电力传输(WPT)是创新,它可能使人免于刺激性的电线。的确,WPT具有类似的基本假设,该假设刚刚创建了30年的归纳功率交换一词。最近,WPT创新在控制水平上正在迅速增长。使WPT对固定和动态充电情况的电动汽车(EV)充电应用非常有用。该项目调查了WPT中远程充电的进步。通过在电动汽车中呈现WPT,充电系统可以有效缓解。电池创新在电动汽车的大众市场入口中再也没有相关。信任的是,专家可以得到前沿成就的支持,并像EV的扩展一样推动WPT的进一步改进。
国家已经表明,公开致力于标准化传输技术,以促进更具成本效益的项目,并为将来的相互联系的离岸网格提供选择性。国家可再生能源实验室的大西洋海上风传输研究1强调了网络高压直流电流(HVDC)传输网格,这是最具成本效益的长期解决方案。其他人倡导交替流动(AC)“网格就绪”系统来解决近期机会。新英格兰州,马里兰州,新泽西州和纽约都需要或表示对任何一种类型的努力表示兴趣,以协调传输设施的规划,反映出更广泛的全球趋势朝着全面的传输策略迈进,尤其是在欧洲的长期计划和大规模的承诺中,以购买必要的设备。
摘要:阴离子交换膜为更昂贵的质子交换膜燃料电池提供了有希望的替代品。但是,对阴离子交换膜中的氢氧化离子电导率知之甚少。在本文中,我们使用经典的分子动力学模拟来研究由乙烯 - 二乙烯基乙酸(EVA)制备的四种不同聚乙烯膜的结构和离子传输性能。我们检查了膜的微观结构,发现与具有广泛空腔分布的膜相比,腔尺寸分布狭窄的聚合物在氢氧化离子周围的水分子堆积更紧。我们计算水合膜的结构因子,并找到1和4 nm -1之间的峰,这是这些材料中离子簇的特征。我们估计水和氢氧化物离子的自扩散系数,发现水分子在所有系统中的扩散量高于氢氧化离子。氢氧化物扩散的趋势与实验电导率测量很好地对齐。对于具有广泛空腔的系统,水促进了通过车辆运输的氢氧化物扩散,并且在空腔狭窄的系统中,观察到离子跳和车辆运输。通过计算离子 - 离子和离子 - 溶剂相关性通过Onsager传输系数框架来量化这一点。关键字:聚合物膜,离子交换,分子动力学模拟,氢氧化物传输,离子体■简介
Meihua Fang 1 , Zheng liang 1 , Yingkui Gong 2* , Jianfei Chen 1 , Guiping Zhu 1 ,Ting Liu 2 , Yu tian 2 , Yu Zhou 2