近年来,RNA 测序激发了大量的研究领域。大多数方案依赖于在逆转录反应过程中合成更稳定的 RNA 分子互补 DNA (cDNA) 拷贝。结果 cDNA 池经常被错误地认为在数量和分子上与原始 RNA 输入相似。遗憾的是,偏差和伪影会混淆结果 cDNA 混合物。依赖逆转录过程的人们在文献中经常忽视或忽略这些问题。在这篇评论中,我们向读者展示了 RNA 测序实验过程中逆转录反应引起的样本内和样本间偏差和伪影。为了打消读者的疑虑,我们还提供了大多数问题的解决方案并介绍了良好的 RNA 测序实践。我们希望读者能够利用这篇评论,从而为科学合理的 RNA 研究做出贡献。
摘要 脑电图 (EEG) 信号是神经科学研究和临床应用(如脑机接口和神经系统疾病诊断)的基础。这些信号通常是神经活动和噪声的组合,来自各种来源,包括眼球和肌肉运动等生理伪影。在这种情况下,我们解决了区分神经活动和噪声相关来源的挑战。我们开发了一种在频域中运行的新型 EEG 去噪模型,利用有关噪声频谱特征的先验知识自适应地计算用于噪声分离的最佳卷积滤波器。该模型经过训练可以学习一种经验关系,将噪声和噪声信号的频谱特性与允许信号去噪的非线性变换联系起来。在 EEGdenoiseNet 数据集上的性能评估表明,所提出的模型根据时间和频谱指标都实现了最佳结果。发现该模型可以从输入的 EEG 数据中去除生理伪影,从而实现有效的 EEG 去噪。事实上,该模型的性能与基准模型相当甚至更好,证明可以有效去除肌肉和眼部伪影,而无需对特定类型的伪影进行任何训练。
通过脑皮层电图 (ECoG) 进行皮层刺激可能是在双向脑机接口 (BD-BCI) 中诱导人工感觉的有效方法。然而,电刺激引起的强电伪影可能会显著降低或掩盖神经信息。详细了解刺激伪影通过相关组织的传播可能会改进现有的伪影抑制技术或启发开发新的伪影缓解策略。因此,我们的工作旨在全面描述和模拟硬膜下 ECoG 刺激中伪影的传播。为此,我们收集并分析了四名患有癫痫并植入硬膜下 ECoG 电极的受试者的雄辩皮层映射程序数据。从这些数据中,我们观察到伪影在所有受试者的时间域中都表现出锁相和棘轮特性。在频域中,刺激导致宽带功率增加,以及基频刺激频率及其超谐波的功率爆发。伪影的空间分布遵循电偶极子的电位分布,在所有受试者和刺激通道中,拟合优度中值为 R 2 = 0.80。高达 ± 1,100 µ V 的伪影出现在距离刺激通道 4.43 至 38.34 毫米的任何地方。这些时间、光谱和空间特性可用于改进现有的伪影抑制技术,启发新的伪影缓解策略,并有助于开发新的皮质刺激方案。总之,这些发现加深了我们对皮质电刺激的理解,并为未来的 BD-BCI 系统提供了关键的设计规范。
摘要:基于脑电图的脑机接口 (BCI) 具有超越传统神经反馈训练的广阔治疗潜力,例如实现个性化和优化的虚拟现实 (VR) 神经康复范例,其中视觉体验的时间和参数与特定大脑状态同步。虽然 BCI 算法通常被设计为专注于信号中信息量最大的部分,但在这些大脑状态同步的应用中,至关重要的是,最终的解码器对代表各种心理状态的生理大脑活动敏感,而不是对诸如自然运动产生的伪影敏感。在本研究中,我们比较了从提取的大脑活动和 EEG 信号中包含的伪影中解码不同运动任务的相对分类准确度。在基于 VR 的逼真神经康复范例中,从 17 名慢性中风患者身上收集了 EEG 数据,同时执行六种不同的头部、手部和手臂运动。结果表明,在分类准确度方面,EEG 信号的伪像成分比大脑活动的信息量大得多。这一发现在不同的特征提取方法和分类流程中是一致的。虽然可以通过适当的清理程序恢复信息性脑信号,但我们建议不要仅将特征设计为最大化分类准确度,因为这可能会选择剩余的伪像成分。我们还建议使用可解释的机器学习方法来验证分类是否由生理脑状态驱动。总之,虽然信息性伪像在基于 BCI 的通信应用中是一个有用的朋友,但它们在估计生理 32 脑状态时可能是一个麻烦的敌人。33
(f)未履行排除黑社会组织承诺的人的投标或承诺中存在虚假内容,或发生违反承诺的情况时。 (5)投标方法 在确定中标人时,中标价将是投标文件中载明的金额加上该金额的 10%(如果该金额有小于 1 日元的尾数,则该尾数将四舍五入)。因此,无论投标人是消费税的纳税人还是免税人,都必须在其投标文件中载明相当于估算金额 110/100 的金额。 (6)中标人的确定方法 投标总额在团队确定的估价范围内的投标人即为中标人。但若有两个或两个以上的最低出价者有资格成为中标人,则将以抽签方式确定中标人。 (7)合同的准备 中标决定确定后,中标人应立即按照陆上自卫队驻地标准合同的格式准备合同。 (8)其他 A.双方签字、盖章后,本合同即成立。 如需参加投标,须提交《资格审查结果通知书》复印件。但若报告已提交至会计部门,则可省略。 C) 投标人的投标文件中必须包含以下内容: “本公司(本人(若为个人)、本公司(若为团体))接受《投标及合同指南》及《标准合同等》的合同条款,响应上述公告,参与投标。”此外,我们承诺遵守《招标及承包指南》中关于排除黑社会组织参与的条款。 “e) 如果您通过代理人竞投,您必须提交一份授权委托书。 如果投标于 2024 年 7 月 26 日星期五中午 12:00 之前到达会计部门,则通过邮寄方式发送的投标将被视为有效。信封中必须包含以下文字:此外,还需将资格审查结果通知书复印件与投标文件单独寄送。 《2024年7月26日星期五租用简易航空摄影设备的招标文件》 (a)在投标的情况下,包括邮寄投标,如果重新投标,将在官方指定的日期和时间举行。但这只对那些参加过初始竞标的人有效。 本协议适用的合同条款为标准驻地租赁合同条款,特殊条款为关于串通等不当行为的特殊条款和关于排除有组织犯罪的特殊条款。 有关招标的询问的联系:第375会计单位,日本Bihoro Garrison,地面自卫队,合同部分(联系人:Kawaguchi)电话:0152-73-2114(EXT。379)传真:0152-73-2114(Ext。378)张贴地点:北部地区会计单位Bihoro Garrison 375会计单位,萨普罗·加里森(Sapporo Garrison),第343会计局,阿萨希川·加里森(Asahikawa Garrison),第374届会计单位,obihiro Garrison,376 the ,Ozora镇工商业会议厅北部地区会计部门网站:https://www.mod.go.jp/gsdf/nae/fin/fin/index.html B.展出时间:2024年7月12日(星期五)至2024年7月26日(星期五)
神经退行性,神经发育和神经精神疾病是最大的公共卫生挑战之一,因为许多人缺乏调整疾病的治疗方法。缺乏有效疗法的主要原因是我们对病因和细胞机制的有限理解。全基因组关联研究正在提供越来越多的疾病相关遗传变异的目录。下一个挑战是阐明这些变体如何引起疾病,并将这种理解转化为疗法。本综述描述了最近开发的基于CRISPR的功能基因组学方法如何发现神经系统疾病中的疾病机制和治疗靶标。使用CRISPR干扰(CRISPRI)和CRISPR激活(CRISPRA),可在实验疾病模型中使用细菌CRISPR系统来编辑基因组并控制基因的表达水平。这些遗传扰动可以在大规模平行的遗传筛选中实施,以评估人类细胞的功能后果。CRISPR筛选与诱导的多能干细胞(IPSC)技术相结合,该技术能够推导分化的细胞类型,例如神经元和神经胶质,以及来自从患者获得的细胞的脑器官。基于疾病相关的基因表达变化的基于CRISPRI/CRISPRA的建模可以确定因果变化。遗传修饰者筛查可以阐明疾病机制,细胞类型选择性脆弱性的因果决定因素,并确定治疗靶标。
1. Mulert, C.、Pogarell, O. 和 Hegerl, U. 同步 EEG-fMRI:精神病学展望。CEN, 39(2),61–64 (2008)。https://doi.org/10.1177/155005940803900207 2. Shams, N.、Alain, C. 和 Strother, S. 同步 EEG–fMRI 中诱发反应的 BCG 伪影去除方法比较。J. Neurosci. Methods 245, 137–146 (2015) 3. Iannotti GR、Pittau F.、Michel CM、Vulliemoz S. 和 Grouiller F. 基于 EEG 地图拓扑在同步 EEG-fMRI 记录中进行脉冲伪影检测。脑拓扑; 28(1):21-32 (2015) 4. Allen, PJ, Polizzi, G., Krakow, K., Fish, DR 和 Lemieux, L. Identification of EEG events in the MR scanner: the problem of pulse pseudodragon and a method for its subtraction. Neuroimage 8(3), 229–239 (1998) 5. C. Bénar, Y. Aghakhani, Y. Wang 等,Quality of EEG insynchronous EEG–fMRI for epilepsy,Clin. Neurophysiol. 114 (3), 569–580 (2003) 6. K. Niazy, CF Beckmann, GD Iannetti 等, 使用最优基础集从 EEG 数据中去除 FMRI 环境伪影, Neuroimage 28 (3), 720–737 (2005) 7. Kruggel F, Wiggins CJ, Herrmann CS 等, 在 3.0 Tesla 场强下功能性 MRI 期间记录事件相关电位。Magn Reson Med, 44(2): 277-282 (2000) 8. Niazy, RK, Beckmann, CF, Iannetti, GD, Brady, JM 和 Smith, SM, 使用最优基础集从 EEG 数据中去除 FMRI 环境伪影。 Neuroimage 28(3), 720–737 (2005) 9. Li Hu, Zhiguo Zhang: EEG 信号处理和特征提取。Springer Nature (2019) 10. Ibrahim Sadek, Jit Biswas, Bessam Abdulrazak。心冲击信号处理:综述。健康
缩写:FCN = 完全卷积神经网络;MSE = 均方误差;SSIM = 结构相似性指数在 MRI 检查期间,患者运动会导致伪影,而伪影是临床实践中造成图像质量下降的常见原因,据报道,这会影响 10% – 42% 的脑部检查的图像质量。1、2 在图像采集时可能会识别出对 MRI 检查诊断价值有重大影响的运动伪影,导致近 20% 的 MRI 检查出现重复序列。1、3 这些重复序列会给放射科带来大量的时间和财务成本。1 由于无法保证患者在重复序列期间能够更好地保持静止,因此图像的诊断价值往往会受到影响。
已经进行了各种研究来减少脑电图中的伪影。改进脑带记录技术、使用计算机方法去除伪影以及使用各种滤波器都是提高脑电波记录质量的方法 [3, 7-8]。在 Lee One 等人的干预下,使用自动系统去除伪影,其灵敏度为 82.4%,特异性为 83.3%,并在很大程度上消除了伪影。该方法的灵敏度和特异性在很大程度上类似于由受过训练的操作员去除伪影 [9]。在另一项研究中,肉毒杆菌毒素注射用于减少肌源性伪影,这显著减少了肌源性伪影 [10]。去除肌肉伪影已被证明可将癫痫发作定位的灵敏度从 62% 提高到 81%,其最佳效果是在具有中度至重度肌肉伪影的发作带中。去除伪影可以更早地检测到鱼鳞病改变并检测到隐藏在伪影中的物品 [6]。另一方面,也有研究表明,使用一些方法和计算机程序去除伪影的效度较低[11]。
脑电图是使用分布在颅骨周围的小电极记录的。电极的数量各不相同,国际临床神经生理学联合会采用的标准之一是国际 10-20 电极放置协议,该协议描述了 21 个电极的放置位置[ 24 ],但也有许多应用使用 35 通道、125 通道甚至高密度 256 通道。《行为与脑科学杂志》的一篇文章探讨了不同数量的电极对移动活动期间记录的脑电图的影响。[19 ]随着电极数量的增加,捕获的脑电图质量会提高,但成本和设置也会变得更加复杂和耗时。