网格适应在CFD中至关重要,对于动态完善并优化计算网格,增强了捕获复杂流动特征的精度。基于度量的网格适应性,虽然在数学上健壮,但通常依赖于伴随解决方案来进行误差估计,这可以显着增加计算需求。为了应对这一挑战,这项研究旨在开发一种机器学习驱动的方法来改编CFD,从而消除了对计算强度密集的伴随解决方案的需求。在追求此目标时,我们采用集合模型和图形卷积网络(GCN)来预测在适应过程中每个单元格的局部误差估计器。我们的发现表明,GCNS胜过各向同性网格的集合模型,而两个模型在各向异性网格中产生相似的结果。这些结果表明,我们的机器学习驱动的方法消除了求解伴随方程的误差估计的需要,为在复杂的流动方案中为更有效的CFD模拟铺平了道路。
摘要:本文提出了一种增量反步滑模(IBS)控制器,用于无尾飞机的轨迹控制,该控制器具有未知干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种限制虚拟控制输入速率和幅度的稳定性增强器(SE)。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,将激活第一层 SE 来修改轨迹跟踪误差;当虚拟控制输入超出边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。在 SE 的帮助下,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数自适应估计器,与 IBS 相结合,使控制器表现出良好的鲁棒性。最后,给出了两个仿真。第一次仿真表明系统对外部干扰和模型不确定性不敏感,第二次仿真证明了 SE 的有效性。
摘要 — 本文使用来自自动识别系统 (AIS) 的实时数据和扩展卡尔曼滤波器 (EKF) 设计来解决船舶运动估计问题。AIS 数据由全球船舶传输,甚高频 (VHF) AIS 接收器以美国国家海洋电子协会 (NMEA) 指定的格式接收编码的 ASCII 字符信号。因此,必须使用解析器解码 AIS 语句以获取实时船舶位置、航向和速度测量值。状态估计用于碰撞检测和实时可视化,这是现代决策支持系统的重要功能。使用来自挪威特隆赫姆港的实时 AIS 数据验证了 EKF,并证明了估计器可以实时跟踪船舶。还证明了 EKF 可以预测船舶的未来运动,并在防撞场景中分析了不同的规避动作。索引词——卡尔曼滤波器、状态估计、运动预测、碰撞检测、无人水面舰艇、船舶
摘要。疾病进展模型对于理解退行性疾病至关重要。混合效应模型一直用于模拟临床评估或从医学图像中提取的生物标志物,允许在任何时间点进行缺失数据的填补和预测。然而,这种进展模型很少用于整个医学图像。在这项工作中,变分自动编码器与时间线性混合效应模型相结合,以学习数据的潜在表示,使得各个轨迹随时间遵循直线,并以一些可解释的参数为特征。设计了一个蒙特卡罗估计器来迭代优化网络和统计模型。我们将此方法应用于合成数据集,以说明时间依赖性变化与受试者间变异性之间的分离,以及该方法的预测能力。然后,我们将其应用于来自阿尔茨海默病神经影像计划 (ADNI) 的 3D MRI 和 FDG-PET 数据,以恢复大脑结构和代谢改变的详细模式。
摘要 — 我们解决了以下问题:(a) 根据动作开始的几秒钟预测手臂伸展运动的轨迹;(b) 利用该预测器帮助操作员预测运动方向,从而减少操作员的认知负荷,从而促进共享控制操作任务。我们新颖的意图估计器称为 Robot Trajectron (RT),它根据机器人的近期位置、速度和加速度历史,生成机器人预期轨迹的概率表示。通过考虑手臂动力学,RT 可以比其他仅使用手臂位置的 SOTA 模型更好地捕捉操作员的意图,使其特别适合协助操作员意图易受变化的任务。我们推导出一种新颖的共享控制解决方案,将 RT 的预测能力与潜在到达目标位置的表示相结合。我们的实验证明了 RT 在意图估计和共享控制任务中的有效性。我们将在 https://gitlab.kuleuven.be/detry-lab/public/robot-trajectron 上公开提供支持我们实验的代码和数据
摘要:本文提出了一种增量反步滑模 (IBS) 控制器,用于无尾飞机的轨迹控制,该飞机具有未知的干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种稳定性增强器 (SE),它限制了虚拟控制输入的速率和幅度。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,第一层 SE 将被激活以修改轨迹跟踪误差;当虚拟控制输入超过边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。借助 SE,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数的自适应估计器,与 IBS 一起,使控制器表现出出色的鲁棒性。最后,给出了两个仿真结果。第一次仿真表明系统对外界干扰和模型不确定性不敏感,第二次仿真证明了SE的有效性。
随着将无人机系统 (UAS) 整合到国家空域系统 (NAS) 的需求不断增长,需要新的程序和技术来确保空域安全运行并最大限度地减少 UAS 对当前空域用户的影响。目前,小型 UAS 在民用空域的使用受到限制,因为它们没有检测和避开其他飞机的能力。在本文中,我们将介绍一个框架,该框架由基于广播式自动相关监视 (ADS-B) 的传感器、航迹估计器、冲突/碰撞检测和降低碰撞风险的解决方案组成。ADS-B 提供长距离、全方位入侵者检测,对尺寸、重量、功率和成本要求相对较低。所提出的冲突/碰撞检测和冲突/碰撞解决规划算法是在局部级别框架中设计的,该框架是展开的、未倾斜的机身框架,其中本机静止在地图中心。路径规划方法设计为随着与本机距离的增加而具有多分辨率,以考虑自分离和避免碰撞的阈值。我们使用模拟 ADS-B 测量来演示和验证此方法。
本文介绍了针对海洋表面车辆(MSV)的双环自适应轨迹跟踪控制系统,该系统既解决运动学和动态干扰。该方法始于外环的后台控制策略,该策略在运动级别生成速度命令,以确保对MSV的位置和标题进行准确跟踪。一个自适应估计器已整合以评估未知的海洋电流速度,从而有效地补偿了其影响。内环控件采用线性参数化来在动态级别产生扭矩命令,从而确保实际速度和指挥速度状态之间的对齐。提出了两种自适应调整定律:一个用于估算具有挑战性的水动力参数,另一个用于补偿外部海洋干扰。双环控制可显着减轻运动学和动态干扰的影响,从而提高了MSV跟踪的精度和整体性能。稳定性,并得出了系统未知参数的适应定律。数值模拟证明了拟议的控制策略的功效。
对Cislunar操作的兴趣增加需要将太空域的意识能力扩展到地球的地球范围内。成功的太空领域意识需要对空间对象行为的知识和分类。此信息可以用作未来和当前任务计划的决策工具。通过发展描述性生活模式来获取空间对象行为的信息的方法。生活的描述模式从空间对象建立了一组预期的动作或运动。这项研究开发了生活的描述性电气化模式,用于在Earth-moon系统中L1和L2 Lagrange点附近重复自然轨迹。a L 2最佳模型预测控制和冲动控制器被实现,以在高层象征的模型中维护所需的轨迹。证明了基于最佳控制的估计器可检测电气维持操作,并实现了一级支持向量分类器,以确定空间对象相对于既定的固定存储模式的空间对象的异常行为。
•退休研讨会可亲自参加。您也可以在DRS退休研讨会退休研讨会网页上方便地观看研讨会。主题包括计划1,计划2,计划3,DCP,社会保障和医疗保健选择以及志愿雇员受益人协会(VEBA)。•您的在线帐户帐户中的福利估计器可以使用您的实际帐户数据来根据各种方案(例如不同的退休日期)计算您的每月收益。如果您尚未注册此服务,则只需几分钟即可。•延期薪酬计划递延薪酬计划(DCP)是一种特殊的储蓄计划,可帮助您投资于要实现的退休生活方式。与传统储蓄帐户不同,DCP是税收延长的。这意味着它在您工作时会降低您的应税收入,并且延迟了您的投资付款,直到您撤回资金。贡献会自动从您的薪水中扣除,因此节省很容易。您可以从每月30美元开始。您还可以让您的贡献以扣除百分比增长。