智能反射面 (IRS) 是一种数控超表面,包含大量无源反射元件。通过重新配置每个元件的反射系数,IRS 可以控制无线信道,以提高通信系统的覆盖范围和容量 [1–3]。然而,要通过 IRS 增强信道特性,获取准确的信道状态信息是不可避免的。因此,在本文中,我们通过利用固有信道结构来解决 IRS 辅助多输入多输出 (MIMO) 系统的上行信道估计问题。相关工作:早期关于 IRS 辅助通信系统的信道估计工作主要集中于非结构化信道模型 [4],采用最小二乘或线性最小均方误差估计器 [5]。然而,在较高频段(例如毫米波或太赫兹频段),移动站 (MS)-IRS 和 IRS-基站 (BS) 信道在角域中都表现出很强的稀疏性 [5]。这一观察结果促使 IRS 辅助信道估计算法探索信道的固有稀疏性,从而减少导频开销 [5]。最近的估计器通过考虑额外的
在本文中,研究了具有传感器饱和的可再生能量微电网的分布式状态估计问题。提出了具有传感器饱和的微电网的系统模型。注意力集中在分布式递归估计方案的设计上,以便在传感器饱和的存在下,保证了估计误差协方差的上限。随后,通过适当设计相应状态估计器的增益矩阵来最大程度地减少这种上限。特别是,通过使用矩阵简化方法来处理由网络拓扑产生的增益矩阵的稀疏性。通过分析均等意义中估计误差的指数界限来进行设计的分布式状态估计器的性能评估。最后,在两种情况下进行了模拟实验,在可再生能量微电网上进行,该元素包含两个分布式生成单元。模拟结果表明,发达的状态估计方案具有有效性。关键词:Microgrid;传感器饱和;电力系统;分布式状态估计;递归状态估计。
这项工作提出了一种方法,将基于组件的降阶模型库与贝叶斯状态估计相结合,以创建数据驱动的基于物理的数字孪生。降阶建模产生的基于物理的计算模型足够可靠,可用于预测数字孪生,同时仍然可以快速评估。与传统的整体模型降阶技术相比,基于组件的方法可以有效地扩展到大型复杂系统,并为快速模型自适应提供灵活且富有表现力的框架——这两者都是数字孪生环境中的关键特性。数据驱动的模型自适应和不确定性量化被表述为贝叶斯状态估计问题,其中传感器数据用于推断模型库中的哪些模型是数字孪生的最佳候选者。通过为 12 英尺翼展无人机开发数字孪生来展示这种方法。离线时,我们构建了一个原始和受损飞机部件库。在线时,我们使用结构传感器数据快速调整基于物理的飞机结构数字孪生。数据驱动的数字孪生使飞机能够根据结构损坏或退化动态地重新规划安全任务。
当今的工程系统越来越复杂,通常涉及众多组件、无数数学模型以及遍布全球的大型设计团队。这些特点都给系统设计过程带来了不确定性,如果管理不当,可能会升级为严重危及设计程序的风险。事实上,近期历史充斥着由于未能识别和降低设计过程中出现的与性能、成本和进度相关的风险而导致重大设计挫折的例子。本论文的目标是开发有助于量化、理解和减轻工程系统设计中不确定性影响的方法。设计过程被视为一个随机估计问题,其中设计参数和相关数量的不确定性水平以概率形式表征,并随着新信息的出现通过连续迭代进行更新。建议的复杂性和风险定量指标可用于设计环境中严格估计不确定性,并对系统的稳健性和可靠性产生直接影响。新的局部敏感性分析技术有助于近似设计参数的均值或方差变化所导致的复杂度和风险。一种新颖的基于复杂性的敏感性分析方法可以将输出不确定性分配到贡献中
本文提出了一个主动信息指导的强化学习(AID-RL)框架,以寻求和估计问题。来源寻求要求搜索代理向真实来源转向,源估计要求代理维护和更新有关源属性(例如释放率和源位置)的知识。这两个目标产生了新开发的框架,即探索和剥削的双重控制。在本文中,贪婪的RL形成了一种剥削搜索策略,该策略将代理导航到源位置,而信息定向的搜索命令命令代理探索最有用的立场以减少信念不确定性。使用高实费数据集提出了广泛的结果,该数据集用于自主搜索,该数据集验证了提出的辅助-RL的有效性,并突出了主动探索在改善采样效率和搜索性能方面的重要性。2023作者。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要最近,我们发现了几种量子算法的候选者,这些算法可以在近期设备中实现,以估算给定量子状态的振幅,这是各种计算任务(例如蒙特卡洛方法)中的核心子例程。这些算法之一是基于并行化量子电路的最大似然估计。在本文中,我们扩展了此方法,使其结合了逼真的噪声效果,然后在超导IBM量子设备上进行实验演示。假设去极化噪声的模型构建最大似然估计器。然后,我们将问题提出为两参数估计问题,相对于目标振幅参数和噪声参数。特别是我们表明存在异常的目标值,其中Fisher信息矩阵变成退化,因此即使通过增加振幅膨胀的数量也无法改善估计误差。实验证明表明,提出的最大似然估计器在查询数量中实现了量子加速,尽管估计误差由于噪声而饱和。估计误差的饱和值与该理论一致,这意味着去极化噪声模型的有效性,从而使我们能够预测量子计算机中硬件组件(尤其是门误)的基本要求(尤其是栅极误差),以实现幅度估计任务中的量子加速。
任何稀疏编码方法的最终目标都是从一些嘈杂的线性测量中准确地恢复未知的稀疏向量。不幸的是,这个估计问题通常是 NP 难的,因此总是采用近似方法(例如套索或正交匹配追踪)来解决,从而以牺牲准确性换取较低的计算复杂度。在本文中,我们开发了一种量子启发的稀疏编码算法,前提是量子计算机和伊辛机的出现可能带来比传统近似方法更准确的估计。为此,我们将最一般的稀疏编码问题表述为二次无约束二进制优化 (QUBO) 任务,可以使用量子技术有效地将其最小化。为了推导出在自旋次数(空间复杂度)方面也高效的 QUBO 模型,我们将分析分为三个不同的场景。这些由表示底层稀疏向量所需的位数定义:二进制、2 位和一般定点表示。我们在 LightSolver 的量子启发数字平台上使用模拟数据进行数值实验,以验证我们的 QUBO 公式的正确性并证明其优于基线方法。
摘要 — 要获得可重构智能表面 (RIS) 的好处,通常需要信道状态信息 (CSI)。然而,RIS 系统中的 CSI 获取具有挑战性,并且通常会导致非常大的导频开销,尤其是在非结构化信道环境中。因此,RIS 信道估计问题引起了广泛关注,并且近年来也成为热门研究课题。在本文中,我们针对一般非结构化信道模型提出了一种决策导向 RIS 信道估计框架。所采用的 RIS 包含一些可以同时反射和感知传入信号的混合元素。我们表明,借助混合 RIS 元素,可以准确恢复导频开销与用户数量成比例的 CSI。因此,与采用无源 RIS 阵列的系统相比,所提出的框架大大提高了系统频谱效率,因为无源 RIS 系统中的导频开销与 RIS 元素数量乘以用户数量成正比。我们还对导频导向和决策导向框架进行了详细的频谱效率分析。我们的分析考虑了 RIS 和 BS 的信道估计和数据检测误差。最后,我们给出了大量模拟结果来验证分析的准确性,并展示了所提出的决策导向框架的优势。
隶属等级 (GoM) 模型是用于多变量分类数据的流行个体级混合模型。GoM 允许每个主体在多个极端潜在概况中拥有混合成员身份。因此,与限制每个主体属于单个概况的潜在类别模型相比,GoM 模型具有更丰富的建模能力。GoM 的灵活性是以更具挑战性的可识别性和估计问题为代价的。在这项工作中,我们提出了一种基于奇异值分解 (SVD) 的谱方法来进行具有多元二元响应的 GoM 分析。我们的方法取决于以下观察:在 GoM 模型下,数据矩阵的期望具有低秩分解。对于可识别性,我们为期望可识别性概念开发了充分和几乎必要的条件。对于估计,我们仅提取观测数据矩阵的几个前导奇异向量,并利用这些向量的单纯形几何来估计混合成员分数和其他参数。我们还在双渐近状态下建立了估计量的一致性,其中受试者数量和项目数量都增长到无穷大。我们的谱方法比贝叶斯或基于可能性的方法具有巨大的计算优势,并且可以扩展到大规模和高维数据。广泛的模拟研究表明我们的方法具有卓越的效率和准确性。我们还通过将我们的方法应用于人格测试数据集来说明我们的方法。
摘要:将深度学习方法应用于脑电图 (EEG) 数据以进行认知状态评估,与以前的建模方法相比取得了进步。然而,使用这些技术进行跨参与者认知工作量建模的研究代表性不足。我们研究非刺激锁定任务环境中的跨参与者状态估计问题,其中使用训练模型对训练集中未出现的新参与者进行工作量估计。使用来自多属性任务电池 (MATB) 环境中的实验数据,在计算效率、模型准确性、方差和时间特异性的权衡空间中评估了各种深度神经网络模型,得出三个重要贡献:(1) 在大多数序列长度下,单独训练的模型集合的性能在统计上与组训练方法没有区别。与组训练方法相比,这些集成训练所需的计算成本仅为其一小部分,并且能够更简单地更新模型。(2) 虽然增加时间序列长度可以提高平均准确度,但不足以克服个体脑电图数据之间的分布差异,因为它会导致跨参与者方差在统计上显着增加。(3) 与所有其他评估的网络相比,使用多路径子网络和双向残差循环层的新型卷积循环模型导致预测准确度在统计上显着增加,并降低跨参与者方差。