摘要:将深度学习方法应用于脑电图 (EEG) 数据以进行认知状态评估,与以前的建模方法相比取得了进步。然而,使用这些技术进行跨参与者认知工作量建模的研究代表性不足。我们研究非刺激锁定任务环境中的跨参与者状态估计问题,其中使用训练模型对训练集中未出现的新参与者进行工作量估计。使用来自多属性任务电池 (MATB) 环境中的实验数据,在计算效率、模型准确性、方差和时间特异性的权衡空间中评估了各种深度神经网络模型,得出三个重要贡献:(1) 在大多数序列长度下,单独训练的模型集合的性能在统计上与组训练方法没有区别。与组训练方法相比,这些集成训练所需的计算成本仅为其一小部分,并且能够更简单地更新模型。(2) 虽然增加时间序列长度可以提高平均准确度,但不足以克服个体脑电图数据之间的分布差异,因为它会导致跨参与者方差在统计上显着增加。(3) 与所有其他评估的网络相比,使用多路径子网络和双向残差循环层的新型卷积循环模型导致预测准确度在统计上显着增加,并降低跨参与者方差。