载流子倍增因子的特性是设计坚固可靠的功率半导体器件以及评估其对地面宇宙辐射引起故障的敏感性的关键问题。本文提出了一种低温恒温装置,以将使用来自 Am 241 放射源的软伽马辐射的非侵入式电荷谱技术应用于广泛的 Si 和 SiC 器件。本文提供了一种关系,将液氮温度下测得的倍增因子转换为环境温度下测得的倍增因子。本文提出了一种专用的模拟方案,将 TCAD 和 Monte Carlo 工具结合起来,以预测收集到的电荷的光谱并定位倍增因子的热点。最后,在强调了电荷倍增因子与地面宇宙辐射下的功率器件故障率之间的相关性之后,建议将本技术作为评估安全操作区的补充方法。
化学疗法的系统性会导致广泛影响患者生活质量的广泛副作用。这项研究提出了一个新型框架,将卷积神经网络(CNN)与精确的伽马射线递送系统相结合,以选择性地靶向恶性细胞,从而最大程度地减少对健康组织的附带损害。在12,000个注释的成像数据集上对基于RESNET-50的CNN进行了培训,并与用于实时靶向的机器人辐射系统集成在一起。对合成组织模型的实验验证表明,健康组织损伤降低了92%,报告的副作用降低了78%。统计分析确认模型灵敏度(97.2%),特异性(94.8%)和提高的治疗精度。这项研究为推进个性化肿瘤学并减少化学疗法的身体和情感损失奠定了基础。
摘要 — 伽马射线模块 (GMOD) 是一项用于探测低地球轨道伽马射线爆发的实验,是 2-U 立方体卫星 EIRSAT-1 上的主要科学有效载荷。GMOD 包括一个与硅光电倍增管耦合的溴化铈闪烁体,由定制的 ASIC 处理和数字化。GMOD 主板上的定制固件已设计、实施和测试,用于管理实验的 MSP430 微处理器,包括系统的读出、存储和配置。该固件已在一系列实验中得到验证,这些实验测试了主要时间标记事件 (TTE) 数据在 50 Hz 至 1 kHz 的实际输入探测器触发频率范围内的响应。研究了固件的功耗和成功接收和传输数据包到机载计算机的能力。实验表明,在标准传输模式下,高达 1 kHz 的数据包丢失率低于 1%,功率不超过 31 mW。所展示的传输性能和功耗均在此 CubeSat 仪器所需的范围内。索引术语 —CubeSat、伽马射线、探测器、伽马射线爆发、欧洲航天局“飞向你的卫星!”计划
为了保护放射性来源产生的电离辐射的种群,学者们创建并研究了各种创新的屏蔽材料。伽玛射线和中子的衰减系数表征了辐射被材料吸收的程度[2]。几个过程在电离辐射与物质的相互作用中发生,具体取决于吸收材料的强度和类型。伽玛射线遵循不同的吸收法,并具有更高的渗透率[3]。在核物理学中,辐射在伽马或X射线和中子衰减期间与物质的相互作用很重要。需要选择材料作为X射线和伽马辐射的盾牌时,例如质量衰减系数及其衍生物非常重要[4]。通过质量衰减系数表示伽马(或X射线)与物质相互作用的可能性。在生物,医学,工业和农业领域使用的生物,屏蔽和其他重要材料中伽马和X射线的大规模衰减系数将具有巨大的适用性[5]。研究的目的
1。定义伽马辐射与物质之间相互作用的主要过程:康普顿散射,光电吸收和成对创造。2。解释相互作用横截面的概念。3。得出指数衰减法。定义衰减系数的概念。定义与不同相互作用相对应的衰减系数的组件。4。康普顿散射和光电吸收对伽马量子能量的横截面依赖性的一般形状是什么?推荐阅读:1。Krane K. S.入门核物理学。纽约:约翰·威利(John Wiley&Sons),1988年。 198 - 204,217 - 220,392 - 394。2。Lilley J.核物理:原理和应用。纽约:John Wiley&Sons,2001年。 24 - 25,136 142。3。Knoll G. F.辐射检测和测量。第三版。纽约:John Wiley&Sons,2000年。 48 - 55。
摘要这项研究研究了几种玻璃成分作为伽马射线屏蔽物质的适用性。所测试的组合物具有不同的ZnO浓度,特别是(60-X)B 2 O 3 - 10NA 2 O —15SIO 2 –15SIO 2-5AL 2 O 3 - (x + 10)ZnO(其中x = 5、10、15和20 mol%)。测量以0.6642、1.1776和1.3343的能量水平进行,从CS 137和CO 60点源辐射,以及闪烁检测器[NAI(TL)]。我们研究了与γ辐射屏蔽相关的关键特性,确定有效原子数(z eff),电子密度(N EL),半价值层(HVL),线性衰减(μ)和质量衰减(μm)系数(μm)系数和平均自由路径(λ)。我们的结果表明,随着Zn浓度从15摩尔%上升到35 mol%,在检查中的眼镜从2.12至2.77 g/cm3变得更密集。此外,所有玻璃成分都提供了针对指定能级的伽马辐射的足够保护。µ的值从0.157上升到0.214 cm -1(0.6642 meV),从0.119升至0.160 cm -1(1.1776 meV),并从0.114 cm -1(1.1776 meV),从0.114 cm -1(1.3343 meV)上升到0.160 cm -1(1.1776 meV)。对于样品B1和B4,观察到的HVL值从4.41、5.84和6.12 cm降至3.21、4.31和4.61 cm,分别为0.6642、1.1736和1.3343 MEV。与经常使用的玻璃和混凝土样品相比,经过测试的材料中显示的屏蔽能力更高。该研究强调了这些玻璃成分作为可以掩盖伽马辐射的实用材料的潜力。
花生品种的种子,Tg 38被孟买Bhabha原子研究中心(BARC)的钴60 1来源的200 Gy伽马射线(M发电)辐照。tg 38,一种伽玛射线突变体,于2006年在奥里萨邦,西孟加拉邦,阿萨姆邦和东北州的狂犬病 /夏季被释放[3]。在雨季中播种了辐射的种子,以及未经处理的种子,2008年。在M一代中,仔细检查了植物2的各种经济特征,并选择了39种变体并单独收获。在M中,一个后代(Tg 3 38-38)具有更多的三号种子,更大的豆荚和种子,与其父母相比,育种breed true(图1)。通过在雨天和夏季从M到M世代的雨季和夏季,在后代的POD和其他特征中为POD和其他特征的真实繁殖性质确保了该突变体,并被指定为4 9 Tg 73(图2)。在Panjabrao Deshamukh Krishi Vidyapeeth博士评估了测试其适用性和适应性,TG 73
基于高功率和短脉冲激光器的几项未来实验涉及高能光子的产生,从而将新的重点放在了高能伽马极光法的挑战性主题上。在不久的将来,罗马尼亚的Eli-NP [1]设施将在两个10 PW激光束的帮助下,对高达〜10 23 W/cm 2的强度状态进行独特的研究。尽管低于Schwinger限制(〜10 29 W/cm 2)[2],这种强度制度为理论上预期的QED现象的实验研究开辟了道路,例如辐射反应和辅助成对的产生,在高强度激光脉冲和高能量电子之间的碰撞中(通过Laser Encelons之间的碰撞)(通过Laser Eccelfield aCcelfield aCceleratife)(创建)。在这些实验中,较高的兴趣是在接近GEV或GEV量表下对产生光子的极化和能量的测量。
在这项研究中,使用Geant4 Monte Carlo模拟工具,我们研究了氧化铝,氟化镁,氟化铝,氟化铝,二氧化钛,二吡啶镁,镁镁,硅酸镁,二氧化钙,二氧化钙和液态的燃料范围,并在0.015至10 c. 10 c. 10 c.10 c. 10 c. 10 c.10 c.10 c.10 c.10 c上。在这篇综述中,我们已经计算并分析了线性衰减系数(LAC)和质量衰减系数(MAC),半价值层(HVL),第十值层(TVL),平均自由路径(MFP),有效的原子数,有效的原子密度,有效的电子密度,等效原子原子数和构建量和构建因素和构建因素和构建因素。在工作的延续中,我们已经比较了Geant4 Monte Carlo Simulation Tool的质量衰减系数的计算结果与其他人的实验结果,并通过Xmudat代码的仿真数据进行了比较,并且它们的相对误差非常低,并且彼此吻合非常吻合。最后,以适当的数字显示了所选材料获得的结果。