图 1:分析航空用户需求的高级方法 7 图 2:2015 年至 2025 年按应用划分的 GNSS 设备出货量 17 图 3:主要市场参与者 18 图 4:ICAO 导航路线图 21 图 5:ICAO 监视路线图 22 图 6:进近运行、进近跑道和支持运行的导航设备 26 图 7:空间 GNSS 信号性能要求 – ICAO 附件 10 Vol. I 27 图 8:欧盟 28 国、挪威和瑞士的仪表进近程序跑道类型 32 图 9:ADS-B 在欧洲的强制适用性 35 图 10:美国 ADS-B 空域规则(14 CFR 第 91 部分 § 91.225) 37 图 11:EFVS 可提高夜间和低能见度天气条件下的态势感知能力 44 图 12:故障条件影响的概率和严重程度之间的关系 94 图 13:ADS-B 功能架构 114 图 14:ADS-B 进出扩展应用 116
ADS-B 广播式自动相关监视 AH 抽象层次 AOIS 航空运行信息系统 AR 增强现实 A-SMGCS 先进地面移动引导和控制系统 ATC 空中交通管制 ATCO 空中交通管制操作员 ATCR 空中交通管制雷达 ATM 空中交通管理 COO 协调员 CTOT 计算的起飞时间 CWP 管制员工作位置 DEL 交付 DTD 接地距离 EID 生态界面设计 EOBT 预计起飞时间 ER 探索性研究 ETOT 预计起飞时间 FDP 飞行数据处理 FOV 视场 GGV 注视、手势、语音 GND 地面 HDE 低头设备 HMD 头戴式显示器 ICAO 国际民用航空组织 IFR 仪表飞行规则 IHP 中间等待点 ILS 仪表着陆系统 IMC 仪表气象条件 JU 联合承诺 LOC 航向道 LVP 低能见度程序 OOT 离开塔台 PP 伪飞行员 PSR 主监视 RADAR 雷达无线电探测与测距
沙特民航学院 ANS 培训中心 - 空中交通管制培训设备与设施认证 专业课程 ATC 助理/基础入门课程 (ICAO 051)。 机场管制等级课程 (ICAO 052)。 进近管制程序等级课程 (ICAO 053)。 进近管制监视等级课程 (ICAO 054)。 区域管制程序等级课程 (ICAO 055)。 区域管制监视等级课程 (ICAO 054)。定制培训 机场管制进修课程 进近管制程序进修课程 进近管制监视进修课程 区域管制程序进修课程 区域管制监视进修课程 机场管制员的飞机紧急情况 空中交通管制员在职培训技术课程 空中交通管制员考试技术课程 教员培训课程 空中交通服务主管课程 空中交通管制员的人为因素课程 机场管制员的低能见度程序 TIBA 安全程序(非管制操作) 空中交通管制员的 PBN 课程 一般不寻常紧急情况 空中交通管制员的 CNS/ATM 空中交通管制员的 ADS-B 可修复的空域使用 空中交通管制飞行员控制单元操作员课程 航空法简介 空中交通管制简介 停机坪管理课程 停机坪管理进修课程 空中交通管制的 GACA 规定
3) 2023 年 9 月 8 日,第 445 任务支援组指挥官支援参谋技术员参谋军士长 Alexis Eppley 在俄亥俄州赖特-帕特森空军基地练习战术移动到防御位置,而来自第 445 后勤战备中队和第 445 部队支援中队的飞行员则在模拟敌方火力下提供保护掩护。在 9 月份的单位训练大会上,来自全联各个中队的约 90 名飞行员参加了射击、移动、通信训练。4) 第 445 土木工程中队消防应急服务消防队长首席军士长 Chad Lifer(右)正在调整首席军士长的消防服。 2023 年 9 月 8 日,第 445 空运联队指挥官戈登·韦格 (Gordon Wager) 在俄亥俄州赖特-帕特森空军基地参加实弹训练演习之前。第 445 空运联队与第 788 空运联队消防部门合作进行必需的年度训练,训练内容包括让消防员接触高温和烟雾以及低能见度至零能见度的环境,并让成员熟悉应对策略、技术和程序,以防真实情况发生。
跨学科项目 ANVIS:汽车夜视成像系统 计算机科学、计算机工程、电气工程、光子学 一种增强现实平视显示器或“HUD”,可在低能见度条件下增强驾驶员的视野。摄像头捕捉道路图像(包括盲点),并通过团队开发的算法进行增强。图像投射在挡风玻璃上。可以免提使用,因为系统具有语音识别功能。 智能桌 电气工程、光子学 一种由单个设备和屏幕控制的多方面娱乐和信息系统。多个互连的设备嵌入在咖啡桌大小的表面。配备 HDMI 端口、音响系统、USB 3 型充电站、可对准墙壁或投影仪屏幕的投影仪、指纹安全锁箱以及通过手机应用程序控制的动态 LED 照明。可用于会议或演示。颜色采集设备 电气工程,光子学 该团队使用高功率激光通过受激拉曼散射产生多种波长,试图通过观察波长随时间的不同形状,根据物体的光谱反射率对其进行表征和分类。受激拉曼散射产生的波长使得无需使用衍射元件分离空间中的光波即可区分物体。这减少了整体尺寸和体积,同时
AAIB 印度航空事故调查局 ADS-B 广播式自动依赖性监视 AGL 地平面以上 AIP 航空信息出版物 ANOMS 希思罗噪音和航迹保持系统 AOP 航空运营人许可证 ASDA 可用加速停止距离 ASMGCS 先进地面移动引导和控制系统 ATCO 空中交通管制员 ATD 实际离场时间 ATM 假定温度法 ATIS 自动终端信息服务 ATSI 空中交通服务调查 AUW 总起飞重量 CDU 控制和显示单元 C of A 适航证书 C of R 注册证书 CLD 放行交付单元 COI 调查委员会 CPL 商用飞行员执照 DFDR 数字飞行数据记录器 EFB 电子飞行包 FMC 飞行管理计算机 ICAO 国际民用航空组织 IATA 国际航空运输协会 IFR 仪表飞行规则 LVP 低能见度程序 MDS 多静态依赖性监视系统 MHz 兆赫 MTOW 最大起飞重量 NATS 英国国家空中交通服务 NLR 荷兰航空航天中心 NOTAM 飞行员通知 OPT 机上性能工具 PIC 机长 乘客 旅客 QFE 查询:场地海拔 QNH 查询:海高 R/T 无线电话 SMC 地面运动控制 TODA 可用起飞距离 TODR 所需起飞距离 TO/GA 起飞/复飞 TORA 可用起飞滑跑时间 VR 旋转速度 VHF 甚高频 UTC 协调世界时
高的问题,在全面进入 2D 数字屏幕界面阶段后,飞 机座舱只有少数的传统机械仪表被保留,大部分的飞 行信息数据都由计算机分析后再在主飞行显示器 ( PFD )上显示出来,这种获取信息的方式大大增强 了飞行员驾驶的安全性。平视显示器( HUD )是飞机 座舱人机交互界面的另一种形式。 HUD 可以减少飞 行技术误差,在低能见度、复杂地形条件下向飞行员 提供正确的飞行指引信息。随着集成化和显示器技术 的不断进步, 20 世纪末至今,飞机座舱有着进一步 融合显示器、实现全数字化界面的趋势。例如,我国 自主研发生产的 ARJ21 支线客机、 C919 民航客机, 其座舱的人机界面设计均采用触控数字界面技术代 替了大部分的机械仪表按钮 [2] 。 20 世纪 70 年代,美军在主战机上装备了头盔显 示系统( HMDs ),引发了空中战争领域的技术革命。 在虚拟成像技术成熟后,利用增强现实( AR )技术 可以直接将经过计算机运算处理过的数据和图象投 射到驾驶员头盔的面罩上。例如,美国 F-35 战斗机 的飞行员头盔使用了虚拟成像技术,将计算机模拟的 数字化信息数据与现实环境无缝融合,具有实时显示 和信息叠加功能,突破了空间和时间的限制。 20 世纪 90 年代,美国麦道飞机公司提出了“大 图像”智能化全景座舱设计理念,之后美国空军研 究实验室又提出了超级全景座舱显示( SPCD )的概 念,充分调用飞行员的视觉、听觉和触觉,利用头 盔显示器或其他大屏幕显示器、交互语音控制系统、 AR/VR/ MR 系统、手 / 眼 / 头跟踪电子组件、飞行员 状态监测系统等,把飞行员置身于多维度的显示与 控制环境中。此外,在空间三维信息外加上预测信 息的时间维度功能也是未来座舱显示器的发展趋势 [3] 。 2020 年,英国宇航系统公司发布了一款第六代 战斗机的概念座舱,去除了驾驶舱中所有的控制操 作仪器,完全依靠头盔以 AR 形式将操作界面显示 出来。由上述分析可知,未来基于 XR 环境下的虚拟 增强型人机界面将成为飞机座舱人机交互的全新途 径之一。 在学术界,有关飞机座舱人机交互界面的研究也 取得了较为丰硕的成果,其中代表性研究成果见表 1 。
教育 博士学位,2019 年,机身动力装置维护,埃斯基谢希尔技术大学,土耳其 理学硕士。,2015 年,科学研究生院,机身动力装置维护系,安纳多鲁大学,土耳其 理学学士。,2012 年,机械工程,乌鲁达大学,土耳其 机型培训,2022 年,Cat.B1,空客 A318/A319/A320/A321(IAE V2500) 理论与实践要素,土耳其航空技术公司。 简历 Gorkem Yalin 博士已获得埃斯基谢希尔技术大学的博士学位。他之前曾在安纳多鲁大学航空航天学院(第 147 部分批准的学校)担任研究助理。他曾担任埃尔津詹比纳利耶尔德勒姆大学民航学院第 147 部分认可学校的创始教员和副主任。目前,他是阿布扎比理工学院艾因校区飞机维修技术系的助理教授。他的研究兴趣是燃料电池和氢技术在航空应用、可持续能源、飞机系统、热力学和能源系统方面的应用。他审阅过出版物并完成了研究项目。他在民航学院拥有 10 多年的教学经验。此外,他还拥有多项航空证书,例如:航空法规培训(初级,兼容 Module10)、低能见度操作培训(初级)、油箱安全第 2 阶段培训(初级)、Shy-M/EASA part-M 培训(初级)、Shy-145/EASA part-145 培训(初级)、培训维护人员的人为因素(初级,兼容 Module 9)、安全管理系统培训(初级)、GCAA 自愿报告系统。
行动 • 预计的无冰北极环境将对海军行动的安全性和有效性产生重大影响。这些影响将最明显地影响舰队长期执行行动的能力。虽然目前的任务范围可能会适用,但未来的系统必须适应对所需作战能力 (ROC) 和预计作战环境 (POE) 的重大修改,以进行扩展的极地作战。环境的建模和预测以及针对操作条件的平台设计修改将非常重要。• 极地 C4ISR 基础设施似乎是一个限制因素。需要专门的极地空间支持作战概念来为极地作战提供网络中心战能力。冰侦察应该是一个关键组成部分。• 扩展行动的后勤支持似乎是一个限制因素。必须增强有机航母船上交付/垂直船上交付 (COD/VOD) 能力和岸上基础设施,以保持当前的航行补给 (UNREP) 能力和所需的战斗节奏。• 需要新的传感器和武器性能能力来支持海底战争和打击战争。还需要新的传感器能力来支持利用其他战争领域的情报、监视和侦察水平。• 当前的环境测量和预测,包括北极天气和冰层预测、浅水声学性能预测和动态海洋环境变化,不足以支持北极更大规模的海军行动。需要重新关注天气和冰况的短程预报准确性。对合成孔径雷达 (SAR) 的依赖将增加,必须为其购买 (OM&N) 编制预算。• 海军目前没有在北极环境中对传统或正在开发的武器系统进行武器测试和评估。• 目前的寒冷天气/极地作战训练水平不足以进行长期作战。• 目前的图表和 GPS 支持计划不支持长期极地作战。除非解决这些不足之处,否则安全导航和精确武器投送能力都可能受到严重限制。• 目前的破冰船能力无法支持战斗群规模的部队进行长期极地作战。美国海军没有破冰能力,美国海岸警卫队只有三艘极地破冰船。破冰船应被视为扩展极地作战基础设施的重要组成部分。• 有限的机动空间和快速变化的天气条件将需要新的战术、技术和程序,这些必须在量身定制的极地训练评估中加以解决。需要经过极端天气和低能见度认证的自动导航系统。