电路板布局 TA2020-020 是一款功率(高电流)放大器,工作在相对较高的开关频率下。放大器的输出在驱动高电流的同时,以高速在电源电压和地之间切换。该高频数字信号通过 LC 低通滤波器,以恢复放大的音频信号。由于放大器必须驱动电感 LC 输出滤波器和扬声器负载,因此放大器输出可能被输出电感中的能量拉高至电源电压以上和地以下。为避免 TA2020-020 受到可能造成损坏的电压应力,良好的印刷电路板布局至关重要。建议在所有应用中使用 Tripath 的布局和应用电路,并且只有在仔细分析任何更改的影响后才可以偏离。下图是 Tripath TA2020-020 评估板。电路板上最关键的组件之一是电源去耦电容。如图所示,C674 和 C451 必须放置在引脚 22 和 19 的旁边。如图所示,C673 和 C451B 必须放置在引脚 25 和 28 的旁边。输出级的这些电源去耦电容不仅有助于抑制电源噪声,而且还能吸收放大器输出过冲引起的 VDD 引脚上的电压尖峰。在发生高电流开关事件(如短路)期间,输出电感器反激也可能导致电压过冲
全球环境问题(如全球变暖和化石燃料枯竭)是严重的问题。风力发电作为解决这些问题的方案已在世界范围内受到重视[1]。然而,风力发电机的输出会由于风速变化而频繁且迅速地波动。在拥有大规模风电场 (WF) 的电力系统中,频率和电压等电能质量可能会下降[2–5]。为了避免这种情况,电力公司发布了与 WF 功率波动相关的技术要求。为了缓解功率波动,人们使用了储能系统 (ESS)(如电池或飞轮 [6–8]),如图 1 所示。ESS 的主要问题之一是如何设计控制系统以降低成本。为此,需要一种控制算法来降低 ESS 的额定功率(额定能量容量),因为吸收 WF 输出短期分量的 ESS 的成本主要由额定功率决定。虽然 ESS 的成本也取决于额定能量容量,但它受到 ESS 额定功率(通过所谓的 C 速率)的制约 [9]。此外,虽然 ESS 的充电/放电损耗会影响成本,但尚未详细讨论该问题。已经报道了一些降低额定功率(额定能量容量)的 ESS 控制方法。一阶低通滤波器(FLF)通常用于 ESS 控制系统中,通过消除短期分量来减轻 WF 输出的波动。
然而,产前时期并非没有语言经验,研究了其对新生儿言语和语言编码能力的影响正在受到越来越多的关注。听力变得功能性,并在妊娠的第26至28周左右经历了大部分发育,从而使胎儿能够感知孕产妇的语音信号(Ruben,1995; Moore and Linthicum,2007; Granier-Deferre等,2011; May et al。,2011; Anbuhl et al。,2016年)。尽管尚未完全了解到达胎儿的声学信号的确切特征,但动物模型的宫内记录和模拟表明,母体子宫作为低通滤波器的作用,在600-1,000 Hz的频率上减弱了约30 dB(Gerhardt和Abrams和Abrams,2000年)。通过子宫传播的语音的低频组成部分包括音高,节奏的缓慢方面和一些语音信息(Moon and Fifer,2000; May等,2011)。Evidence indicates that prenatal exposure to speech, despite attenuated by the filtering properties of the womb, shapes speech perception and linguistic preferences of newborns, as shown by studies revealing that neonates can recognize a story heard frequently in utero ( DeCasper and Spence, 1986 ), prefer the voice of their mother ( DeCasper and Fifer, 1980 ) and prefer their native language ( Moon et al., 1993 ).此外,产前学习超出了这些共同的偏好。最近的发现表明,婴儿获得了韵律的特定知识
摘要发达国家最重要的优先事项之一是使用机器决策而不是人类。需要该领域的领域之一就是健康。为此,确定人们的肥胖和瘦弱在研究和研究社会的健康状况和采用卫生系统政策方面非常有用。人物作为研究数据库的图像是从几个不同的环境中编写的,在这些环境中,相机与人之间的距离在所有人之间都是相同的。然后,使用背景扣除去除图像的背景。包括图像形态特征的图像特征是从图像中提取的,并分为两类以执行分类操作。人们分为三类:脂肪,中和薄。使用高斯低通滤波器方法将图像液体使用,并使用两种盐和胡椒噪声和高斯噪声进行过滤的不同频率。n正常图像,最高精度与精度为97.1%的SVM方法有关,最低的方法分别与MLP,贝叶斯和KNN算法有关。本文的结果表明,除了能够从肥胖和瘦弱方面对社会人民进行分类之外,还比到目前为止提出的大多数方法都具有更高的准确性。根据这项研究的解决方案和结果,通过增加人们的形象,除了提高准确性外,它将达到更实际的水平。关键字关键字:分类,图像处理,机器学习,SVM,薄,脂肪
介绍了一种用于 Embraer 190/195 运输类飞机的新型 DC-Link VSCF AC-DC-AC 电力系统转换器。建议的转换器可以取代现有的基于 CSCF IDG 的传统系统。几架当代生产的飞机已经将 VSCF 作为主要或备用电源。过去,较旧的 VSCF 系统存在问题;然而,开关电源电子和数字控制器已经成熟,我们认为现在可以安全地集成并取代现有的为 CSCF AC 发电机供电的恒速液压传动装置。使用 IGBT 功率晶体管进行中等水平的功率转换和相对快速有效的切换。利用 VSCF 进行电力发电、转换、分配、保护和负载管理可提供传统 CSCF IDG 系统所不具备的灵活性、冗余性和可靠性。针对 E190/195 提出的 DC-Link VSCF 系统利用 12 脉冲整流器、降压转换器和 3-w 12 步逆变器(带 D-Y、Y-Y 和 Y-D 3-w 变压器)提供多个级别的 3-w 交流和直流电源,即 330/270/28 VDC 和 200/115/26 VAC。使用三个参考交流相位信号和高达 100 kHz 三角载波的传统双极双边载波脉宽调制可用于消除所有偶数和许多奇数超谐波。无源低通滤波器用于消除更高的谐波。RL 交流负载与
摘要 - Qubits是量子处理器的基本构建块,量子处理器需要Giga Hertz频率范围内的电磁脉冲和纳秒频率的延迟,以进行控制和读数。在本文中,我们解决了与用于控制和测量超导码头的室温电子相关的三个主要挑战:可伸缩性,直接Mi-crowave合成和一个固定的用户界面。为了应对这些挑战,我们开发了基于ZCU111评估套件的系统。SQ-CARS设计为可扩展,可配置和相位同步,提供多数控制和读数功能。该系统提供了交互式Python框架,使其对用户友好。通过确定多个通道的确定性同步来实现对较大Qubits的可伸缩性。该系统支持从4到9 GHz的第二个Nyquist区域技术直接合成任意矢量微波脉冲。它还具有板载数据处理,例如可调的低通滤波器和可配置的旋转块,可实现锁定检测和量子实验的低延迟活动反馈。通过板载Python框架可以访问所有控制和读数功能。为了验证SQ-CARS的性能,我们进行了各种时间域测量值,以表征超导式的Transmon Qubit。我们的结果与类似实验中常用的传统设置进行了比较。通过确定控制和读取通道的确定性同步,以及用于编程的开源方法,SQ-CARS为具有超导码头的高级实验铺平了道路。
数字信号处理的目的是在数字系统上执行,而不是使用模拟电路的操作。以这种方式,它基于软件执行相同的任务,而无需电子材料或更换。此方法可确保设计简单且可升级。例如,一个用RC元素制成的模拟滤镜,有必要更改材料以更改过滤器的截止频率。但是,如果要在数字过滤中执行相同的操作,则只能更改过滤系数。尽管数字过滤器具有优势,但在许多领域(例如扬声器柜中的交叉电路)都使用了模拟过滤器。过滤器是将所需信号传输到输出的系统,并抑制了不希望的信号。在滤波器设计中,如果使用的材料是用r,c或l等元素制成的,则将其定义为模拟滤波器。如果在PC或微处理器等数字环境中进行过滤,则称为数字过滤器。实现了各种过滤器设计。在设计中,关键字是截止频率,这意味着决策点。低通滤波器(LPF)是允许低于切割频率的频率值通过的过滤器,并抑制高于切割频率的频率。高通滤波器(HPF)是允许将频率传输到输出的频率,而不是低于切割频率的频率。带通滤波器(BPF)具有两个截止点。此滤波器在两个切断频率之间传输频率值,并降低了其他频率。带挡过滤器(BSF)阻止了两个截止频率之间的频率并转移
鉴于数据量的越来越多,有一个显着的研究重点是硬件,可提供低功耗的高计算性能。值得注意的是,神经形态计算,尤其是在利用基于CMO的硬件时,已经表现出了有希望的研究成果。此外,越来越强调新兴突触设备(例如非挥发性记忆(NVM)),目的是实现增强的能量和面积效率。在这种情况下,我们设计了一个硬件系统,该硬件系统采用了1T1R突触的一种新兴突触。Memristor的操作特性取决于其与晶体管的配置,特别是它是位于晶体管的源(MOS)还是排水口(MOS)。尽管其重要性,但基于Memristor的操作电压的1T1R配置的确定仍然不足以在现有研究中探索。为了实现无缝阵列的扩展,至关重要的是要确保单位单元格适当设计以从初始阶段可靠地操作。因此,对这种关系进行了详细研究,并提出了相应的设计规则。香料模型。使用此模型,确定最佳晶体管选择并随后通过仿真验证。为了证明神经形态计算的学习能力,实现了SNN推理加速器。此实现利用了一个基于在此过程中开发的验证的1T1R模型构建的1T1R数组。使用降低的MNIST数据集评估了精度。结果证明了受大脑功能启发的神经网络操作成功地在高精度而没有错误的硬件中实现。此外,在DNN研究中通常使用的传统ADC和DAC被DPI和LIF神经元取代,从而实现了更紧凑的设计。通过利用DPI电路的低通滤波器效应来进一步稳定该设计,从而有效地降低了噪声。
完整的实验装置如图 S1 所示。超导量子比特遵循文献 [1] 中描述的“3D transmon”设计。单个铝制约瑟夫森结与蓝宝石衬底上的两个 0.4 x 1 毫米天线相连,嵌入空的铝块腔中,固定在稀释制冷机的 20 mK 基温下。transmon 芯片采用电子束光刻、双角蒸发和氧化工艺制成隧道结。光谱测量得出量子比特频率 ν q = 5 . 19 GHz,与下一个跃迁相差非谐性 α/ 2 π = 160 MHz。测得的弛豫时间为 T 1 = 16 µ s,拉姆齐时间为 T 2 = 10 . 5 µ s。读出和驱动脉冲由微波发生器产生的两个连续微波音调的单边带调制产生,微波发生器分别设置在 ν c 0 + 62 . 5 MHz 和 ν q + 62 . 5 MHz,其中 ν c 0 = 7 . 74 GHz 是高功率下的腔体频率(图 S3.a)。调制是通过将这些连续波与 62.5 MHz 的脉冲正弦信号混合来完成的,后者由 4 通道泰克任意波形发生器的两个不同通道合成。所有源均由原子钟同步。两个脉冲合并并通过输入线发送到腔体的弱耦合输入端口,输入线在稀释制冷机的各个阶段用低温衰减器进行滤波和衰减,确保进入设备的热激发可以忽略不计。在静止阶段 (850 mK) 使用商用 (来自 K&L) 低通净化滤波器,截止频率为 12 GHz,而在基准温度下插入自制低通滤波器,该滤波器由封闭在装有 Eccosorb 的红外密封盒中的微带线组成。请注意,图 S1 中表示为“反射探针”的类似线已用于现场估计腔体输入和输出耦合率 Γ a,b = γ a,b
光学干扰过滤器用于现代光学元件的大多数区域,因为它们允许修改高精度光学系统中光传播和运输的参数:反射,传输,吸收,吸收,相位和极化,脉冲持续时间,脉冲持续时间等[1-4]。因此,这些光学特性是由波长,入射角和极化的函数控制的。例如,今天,我们合成和制造了许多光学功能,例如抗反射器,极化器和束分式拆分器,二分色过滤器,镜像和窄带过滤器,多PIC过滤器,高和低通滤波器,高通滤波器,逆滤波器,逆滤波器,chir滤波器和其他滤镜。合成(或设计或反问题)技术从数学和算法的角度取得了很大发展,到现在可以将任何任意光学(强度)函数与多层合构成的点。同时,制造技术已经发生了很大的发展,因此现在可以生产几百个薄层不同材料的过滤器,每一层的厚度从几nm到几百nm不等。某些问题自然保持开放,例如(除其他)相位和宽带特性,大块和微材料以及非光学特性。用于旗舰应用,例如引力波[5,6]或陀螺仪的镜子,而空间光学器件,当前的挑战是打破PPM屏障,即确保通过吸收和散射造成的总损失少于入射通量的100万。尽管假想索引(几个10-6)和多层组件中的低粗糙度(nm的一部分),但尚未达到这种艺术状态。应注意,这些损失也与组件的激光通量抗性直接相关,具体取决于照明状态[7]。在最低的光学损失的最后背景下,这项工作已经进行了。在所需的精度水平上,我们需要分析吸收机制的细节,考虑到这种吸收被转移到热传导,对流和辐射的过程中。对这种光诱导的热辐射的分析[8-10]至关重要:首先,它使我们能够追踪非常低的吸收水平(目前难以测量10-6以下),这可以允许确定