通过(TSV)技术利用同轴性通过Silicon,提出了紧凑的低通滤波器(LPF)。首先,通过分析计算,有限元方法(FEM)模拟和测量,研究了基于同轴TSV的几个电容器。其次,提出并通过FEM模拟和测量结果对基于同轴TSV的螺旋感应的电感式的公式进行了验证。最后,提出了基于基于TSV的电容器和电感器的研究,提出了基于2×4、2×5、2×6和2×7同轴TSV阵列的提议𝐿𝐶LPFS的分析模型,并且在AD和HFF中建立了等效电路模型以及在ADS和HFSS中的有限元模型(FEM)模型。LPF通过测量进行制造和验证。在建议的LPF中,同时使用同轴TSV作为电容器和电感器,这会导致更紧凑的大小。电感器的寄生能力可以帮助诱导拟议的LPF在停止带中诱导一个缺口,并提高滚动速率。
摘要本文介绍了高性能电动汽车(EV)同步不情愿电动机(Synrm)驱动器及其车辆到网格(V2G)和车辆对微电网(V2M)双向操作的开发。电池通过双边接口Boost-Buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck buck-link电压良好的驾驶性能在较宽的速度范围内建立。 电动机效率在额定负载附近为92.3%。 在空闲条件下,可以安排嵌入式接口转换器和电动机驱动器的逆变器,以通过添加外部LC低通滤波器来执行G2V/V2G操作。 可以在G2V模式下从电源中充电,并具有良好的线拉功率质量。 另外,在V2G模式下,电池可以以良好的电流波形质量将预设电源发送回实用程序网格。 此外,相同的原理图也可以进行M2V/V2M操作。 基于风开关的利用发电机(SRG)的微电网用作测试工厂。 通过安排的控件成功地提供了电动流动的EV移动储能应用程序,以有效利用可再生能源。 测量结果以所有功率阶段和操作案例令人满意的性能来验证正常操作。良好的驾驶性能在较宽的速度范围内建立。电动机效率在额定负载附近为92.3%。在空闲条件下,可以安排嵌入式接口转换器和电动机驱动器的逆变器,以通过添加外部LC低通滤波器来执行G2V/V2G操作。可以在G2V模式下从电源中充电,并具有良好的线拉功率质量。另外,在V2G模式下,电池可以以良好的电流波形质量将预设电源发送回实用程序网格。此外,相同的原理图也可以进行M2V/V2M操作。基于风开关的利用发电机(SRG)的微电网用作测试工厂。通过安排的控件成功地提供了电动流动的EV移动储能应用程序,以有效利用可再生能源。测量结果以所有功率阶段和操作案例令人满意的性能来验证正常操作。
摘要:本文介绍了一种用于检测脑电图 (EEG) 信号的模拟前端 (AFE)。AFE 由四个部分组成,即斩波稳定放大器、纹波抑制电路、基于 RRAM 的低通 FIR 滤波器和 8 位 SAR ADC。这是首次在 EEG AFE 中引入基于 RRAM 的低通 FIR 滤波器,其中利用 RRAM 的生物可信特性高效分析模拟域中的信号。前置放大器采用对称 OTA 结构,在满足增益要求的同时降低了功耗。纹波抑制电路大大改善了噪声特性和失调电压。基于 RRAM 的低通滤波器实现了 40 Hz 的截止频率,适用于 EEG 信号的分析。SAR ADC 采用分段电容器结构,有效降低了电容器开关功耗。芯片原型采用 40 nm CMOS 工艺设计。整体功耗约为13µW,实现超低功耗运行。
摘要 —动态负载需求会影响输出到负载的功率,这可能无法满足海上石油和天然气装置的 IEC 标准 61892-1。海上石油钻井平台的高功耗需要大型天然气和风力涡轮机发电,而这些发电无法快速反应以增强暂态稳定性。因此,设计了一种能源管理系统 (EMS),该系统带有电池储能系统 (BESS),以取代石油钻井平台上燃气轮机的部分输出功率,以实现最佳暂态响应。我们设计的 EMS 与目前的最先进技术不同,它不使用低通滤波器,从而提高 BESS 的快速响应,同时提高输出到负载的功率质量。我们的 EMS 在模拟中通过最大暂态电压和频率偏差进行了验证,以说明暂态稳定性结果的改善。索引词 —电池储能系统、海上可再生能源系统、石油和天然气平台、暂态稳定性
描述................................................................................................................................1 特性................................................................................................................................1 应用................................................................................................................................1 框图................................................................................................................................1 目录................................................................................................................................2 引脚配置.............................................................................................................................3 订购信息.............................................................................................................................3 引脚说明.............................................................................................................................4 绝对最大额定值.............................................................................................................5 直流电气特性.............................................................................................................6 电气特性.............................................................................................................................6 术语.............................................................................................................................................7 主时钟时序.............................................................................................................................8 数字音频接口.........................................................................................................................8 电源时序............................................................................................................................9 上电复位(POR).............................................................................................................9 MPU 3 线接口时序......................................................................................................12 MPU 2 线接口时序......................................................................................................13 器件描述...................................................................................................................14 简介........................................................................................................................14 时钟方案................................................................................................................14 数字音频接口.............................................................................................................15 音频数据采样率....................................................................................................17 硬件控制模式.............................................................................................................18 软件控制接口.............................................................................................................20 寄存器映射........................................................................................................................................21 衰减控制................................................................................................................22 数字滤波器特性...................................................................................................25 DAC 滤波器响应...................................................................................................25 数字去加重特性...................................................................................................26 应用信息......................................................................................................................27 推荐的外部元件(PCM 音频).............................................................................27 推荐的外部元件值.............................................................................................27 针对 PCM 数据格式的推荐模拟低通滤波器(可选).....28 封装尺寸.............................................................................................................29 重要通知.............................................................................................................30 地址:.............................................................................................................................30
脑电图设计(EEG)设计作为对基于Arduino Uno的额叶部分中脑信号活性的检测。EEG是一种用于记录人脑电活动的工具。 这项研究的目的是创建一种非临床EEG设备,该设备是便携式和低成本的。 研究程序分为三个阶段。 第一阶段是使用Eagle应用程序设计脑电图系统。 第二阶段是创建一个由脑电图系统,电源,Arduino Uno和两个电极组成的EEG系统。 第三阶段是测试EEG系统,其中包括测试仪器加固,低通滤波器测试,电源测试,ADC ARDUINO一致性测试和EEG性能的初步测试以记录大脑信号。 基于测试结果获得了51次仪器加固,平均准确率为99.09%。 同时,获得的截止频率为70 Hz。 使用原型单电极EEG和EEG标准情绪EPOC通过在FP1和A2(地面)点上放置电极,大脑信号测量之间的比率是几乎相同的模式。 因此可以得出结论,创建的EEG单电极系统已成功地用于记录额叶区域的大脑活动。 关键字:Arduino Uno,EEG,额叶,大脑信号EEG是一种用于记录人脑电活动的工具。这项研究的目的是创建一种非临床EEG设备,该设备是便携式和低成本的。研究程序分为三个阶段。第一阶段是使用Eagle应用程序设计脑电图系统。第二阶段是创建一个由脑电图系统,电源,Arduino Uno和两个电极组成的EEG系统。第三阶段是测试EEG系统,其中包括测试仪器加固,低通滤波器测试,电源测试,ADC ARDUINO一致性测试和EEG性能的初步测试以记录大脑信号。基于测试结果获得了51次仪器加固,平均准确率为99.09%。同时,获得的截止频率为70 Hz。使用原型单电极EEG和EEG标准情绪EPOC通过在FP1和A2(地面)点上放置电极,大脑信号测量之间的比率是几乎相同的模式。因此可以得出结论,创建的EEG单电极系统已成功地用于记录额叶区域的大脑活动。关键字:Arduino Uno,EEG,额叶,大脑信号
II。 傅立叶变换与计算机视觉之间的联系以分析和处理图片或视频,即计算机视觉学科,这与分析和从视觉输入中分析和提取有意义的信息有关,采用了许多数学方法。 傅立叶变换是计算机视觉的主食,作为最基本的数学方法之一。 图片可以过滤,可以提取功能,可以注册图片,并且可以借助傅立叶变换和检查其频率含量的检查来识别所有图案。 图像通常通过计算机视觉算法作为二维像素值矩阵处理。 使用傅立叶变换,我们可以通过将其从空间域转换为频域来检查图像的基本频率组件。 为此,在图像矩阵的每一行和列中分别执行傅立叶变换。 图像过滤是对计算机视觉的傅立叶变换。 噪声和其他异常在数字图像中很常见,降低了图像质量并使进一步的处理更加困难。 通过对图片进行傅立叶变换,我们可以隔离关键频率以减少其影响。 当在频域中表示图像时,可以应用过滤操作,例如高通滤波器,以带出小功能和低通滤波器,以使图像平滑并减少噪声。 逆傅里叶变换用于通过将其转换回空间域来获取过滤的图片。 [7]II。傅立叶变换与计算机视觉之间的联系以分析和处理图片或视频,即计算机视觉学科,这与分析和从视觉输入中分析和提取有意义的信息有关,采用了许多数学方法。傅立叶变换是计算机视觉的主食,作为最基本的数学方法之一。图片可以过滤,可以提取功能,可以注册图片,并且可以借助傅立叶变换和检查其频率含量的检查来识别所有图案。图像通常通过计算机视觉算法作为二维像素值矩阵处理。使用傅立叶变换,我们可以通过将其从空间域转换为频域来检查图像的基本频率组件。为此,在图像矩阵的每一行和列中分别执行傅立叶变换。图像过滤是对计算机视觉的傅立叶变换。噪声和其他异常在数字图像中很常见,降低了图像质量并使进一步的处理更加困难。通过对图片进行傅立叶变换,我们可以隔离关键频率以减少其影响。当在频域中表示图像时,可以应用过滤操作,例如高通滤波器,以带出小功能和低通滤波器,以使图像平滑并减少噪声。逆傅里叶变换用于通过将其转换回空间域来获取过滤的图片。[7]
摘要:针对离网微电网中因负载需求波动引起直流母线电压浪涌的问题,提出一种基于混合储能系统的自适应能量优化方法来维持直流母线电压的稳定。自适应能量优化方法包括三部分:均值滤波算法,提取需求负载中的波动功率;超级电容端电压控制,保持超级电容端电压接近参考值;电池组平衡控制,调节充放电使电池组荷电状态平衡。该方法在需求负载波动时,经低通滤波器提取波动功率后,电池组释放功率抵消低频波动负载,超级电容瞬时补偿高频波动功率,延长电池使用寿命并维持直流母线电压的稳定。验证了所提出的自适应能量优化方法的有效性,并确认该方法可以在离网微电网模拟和实验中维持离网微电网的稳定运行,延长蓄电池的循环寿命。
摘要:通过结合不同储能技术的优势,混合储能系统(HESS)可以满足生产系统的多重要求。但是,HESS所需的能力大于单重量储能系统(ESS)的所需能力。本文研究了由低通滤波器控制器的相移及其对HESS的相关影响引起的HESS内部能量交换。结果表明,不必要的能源交换会导致超大容量和增加的能量损失。此外,低通量过滤器控制器的时间常数增加导致更大的相移,进一步导致了总容量和能量损失的增加。此外,本文比较了单电池ESS,电池使用电池电容器HESS和在家庭杂货系统中实施的电池型电池hess以及可再生能源(RES)。ESS组合的比较证明了它们的功率流量之间的差异,其单个储能设备(ESD)所需的容量,能源损失,电池寿命和项目成本。结果表明,应仔细地进行技术经济分析,以选择适当的ESS解决方案,以适合家庭杂货系统。
LM50/LM50-Q1 可以很好地处理电容负载。无需任何特殊预防措施,LM50/LM50-Q1 即可驱动任何电容负载。LM50/LM50-Q1 具有标称 2 k Ω 输出阻抗(如图 17 所示)。输出电阻的温度系数约为 1300 ppm/°C。考虑到此温度系数和电阻的初始公差,LM50/LM50-Q1 的输出阻抗不会超过 4 k Ω。在极其嘈杂的环境中,可能需要添加一些过滤以最大限度地减少噪声拾取。建议从 V IN 到 GND 添加 0.1 μ F 以旁路电源电压,如图 16 所示。在嘈杂的环境中,可能需要在输出到地之间添加一个电容器。具有 4 k Ω 输出阻抗的 1 μ F 输出电容器将形成 40 Hz 低通滤波器。由于 LM50/LM50-Q1 的热时间常数比 RC 形成的 25 ms 时间常数慢得多,因此 LM50/LM50-Q1 的整体响应时间不会受到显著影响。对于更大的电容器,这种额外的时间滞后将增加 LM50/LM50-Q1 的整体响应时间。