在本文中,我们提出了一种波导集成干涉传感器,其中在单个等离子体波导中传播的两种等离子体模式之间发生干涉。为了进行传感,通过增加金属电极之间的距离重新排列了垂直等离子体槽波导。因此,与每个金属电极相关的等离子体模式(通常形成混合等离子体槽模式)已被分离,使它们能够在金属电极的相对边缘上独立传播。这允许实现马赫-曾德尔干涉仪,其中光通过传统的锥形结构从光子波导耦合进出结构。值得注意的是,支持等离子体模式的金属电极也可以用作电触点。通过在它们之间施加直流电压,可以有效地分离漂移到其中一个金属电极的离子。因此,马赫-曾德尔干涉仪的一条臂会经历更高的损耗和相位积累,导致马赫-曾德尔干涉仪不平衡和传输下降。这里,透射率的任何变化仅指液体中的离子量,因为干涉仪的输出信号通过与被检查的液体溶液直接接触的参考臂标准化为液体。被检查的液体中的离子总量保持不变,但是,当施加电压时离子会向其中一个金属电极漂移,因此间隙中的离子分布会发生变化。因此,可以通过干涉仪的透射测量来监测液体中离子浓度的任何变化。所提出的配置对干涉仪两个臂之间的透射率变化高度敏感,即使在 1550 nm 的电信波长下也能实现超过 12460 nm/RIU 的创纪录灵敏度。预计中红外波长的灵敏度将进一步增强,这对应于大多数化学和生物化合物的最大吸收峰。
半导体光电设备,能够以紧凑且高效的方式将电力转换为光线或相反的光线为电力,代表了有史以来最先进的技术之一,该技术具有广泛的应用范围内的现代生活。近几十年来,半导体技术已从第一代狭窄带隙材料(SI,GE)迅速发展为最新的第四代超宽带隙半导体(GAO,Diamond,Aln),其性能增强以满足需求的增长。此外,将半导体设备与其他技术合并,例如计算机辅助设计,最先进的微/纳米织物,新型的外延生长,已经显着加以促进了半导体Optoelectronics设备的发展。在其中,将元浮面和半导体的光电设备集成,为电磁反应的芯片控制打开了新的边界,从而可以访问以前无法访问的自由度。我们回顾了使用集成的跨侧面的各种半导体光电设备在芯片上控制的最新进展,包括半导体激光器,半导体光发射器,半导体光电镜像和低维度的半导体。MetaSurfaces与半导体的集成提供了晶圆级的超级反理解决方案,用于降低半导体设备的功能,同时还提供了实施实际应用中实现实际应用中的实用平台。
图4(a)磁性纳米颗粒簇的水分散液的光学显微镜图像(比例尺:20μm); (c)在2 ml玻璃容器中以10 mg/ml的浓度在水性分散体中的多色磁性纳米颗粒簇的视觉外观,以及(d)反射光谱的相应变化具有不同的EMF强度,通过改变样品和NDFEB Magnet之间的近距离来调节。 (e)将磁性纳米颗粒簇水液滴包裹在PDMS(聚二甲基硅氧烷)膜中,以及(f)使用硅胶毛细管填充的磁性纳米粒子簇在10 mg/ml中的磁性纳米颗粒分散剂的磁性纳米粒子散发的中国结设计,表现出蓝色的界面,呈蓝色的范围,远距离呈蓝色的范围。栏:1厘米)(经参考书的许可[44];版权(2021)皇家化学学会)。
在这种情况下,在 OLA 中注入硫之后,反应 5 分钟后,将 100 l 1 M 硒溶液(以 Se 粉末的形式)注入 TOP(通过将 0.7894 ± 0.0001 g Se 粉末溶解在 1.0 ± 0.1 mL TOP 中制备)注入 NCs 分散体中。让溶液反应 10 分钟,然后冷却至室温。当温度达到约 60°C 时,向样品中加入 3 mL CHCl 3 以停止反应。为了净化,将 NC 溶液分成 3 等份,加入 3 个 Falcon 管(50 mL)中,使用乙醇作为非溶剂。所用的乙醇体积约为每个 Falcon 管中纳米颗粒分散体体积的 2/3。将 Falcon 管离心(9000 rpm,10 分钟),弃去上清液。将沉淀物收集在总体积为 10 mL 的 CHCl 3 中。通过 ICP 测量的 Ag 平均浓度为 1 mg/mL Ag。
摘要:立体光刻已成为以高精度制造复杂结构的最新方法。使用树脂的组件的性质较差。当前的研究研究了SLA技术制造的纳米石材复合材料的性能的改善。比较普通树脂和0.2%,0.2%,0.5%,1%,3%和5%(w / v)的纳米含石与紫外线可策展的树脂的特性。进行了各种分析,包括粘度,紫外线镜检查,水分含量,吸水,凝胶含量,拉伸,弯曲,硬度测试和显微镜表征。实验的结果表明,测试的样品的每个百分比的结果(例如样品特性)的结果差异,这表明添加纳米石膏的百分比越大(5%),样品将会出现,并且会出现较少的光。粘度测试表明,添加到树脂中的纳米石膏的百分比越大,粘度越大。紫外线光谱测试产生了有关电子结构和分子结构的信息,例如它们的组成,纯度和集中。从水分含量分析中进行的观察发现,纳米含量较高的标本中的水分含量影响了物理和机械性能,从而导致更轻松的翘曲,破裂,降低强度等。拉伸和弯曲测试表明,添加纳米石膏的百分比越大,对物理和机械性能(包括骨折)的影响越大。然而,当添加不同百分比的纳米石膏时,某些测试并未始终产生样品之间的显着变化,这在化学耐药性测试中尤其明显。这项研究为通过SLA方法制造的纳米石材复合材料的应用提供了宝贵的见解。
摘要:我们研究了由传输矩阵形式主义中微波区域内的二循环(A)和等离子体(P)材料组成的多通道过滤器的透射率。在应用磁场的影响下研究了提出的过滤器的两种构造:(1)包含空气包围的(a / p)N单位细胞的周期性结构,以及(2)引入第二个电端材料(d),该材料(D)作为A(d)的缺陷层(ap)n / 2 /2 / d / d / d / d / d / 2 Struc-2 Struc-2 Struc-2 Struc-2 Struc-2 Struc。我们的发现表明,在周期性的情况下,透射率的谐振状态随数n的数量增加;然而,观察到的蓝色和红移取决于施加的磁场的强度和方向。我们提出了透射系数的轮廓图,这些图显示了入射角对光子带隙的偏移的影响。此外,我们发现缺陷层的引入会产生额外的共振状态,并将中心共振峰合并为共振的小键。此外,我们表明,可以通过增加单位单元格数N并增加插入的缺陷层的宽度来调节共振峰及其位置的数量。我们提出的结构可以使用在微波区域中运行的磁化等离子体材料来设计新型的光子过滤器。
摘要:等离子体驱动的光催化可实现无法通过其他方式实现的反应选择性。热载流子(即金属纳米结构中等离子体衰变产生的电子和空穴)起着根本性的作用,它们与分子物种相互作用。了解这种选择性背后难以捉摸的微观机制是合理设计热载流子反应的关键步骤。为了实现这一点,我们提出了最先进的多尺度模拟,超越了密度泛函理论,对光催化反应速率决定步骤的热载流子注入进行了模拟。我们专注于二氧化碳还原,实验表明,在光照下存在铑纳米立方体会导致选择性地生成甲烷而不是一氧化碳。我们表明,选择性是由于铑向反应中间体 CHO 直接注入空穴(主要是)。出乎意料的是,这种注入并不是通过有利于适当的键断裂来促进选择性反应路径,而是通过促进适当的分子片段与表面结合来促进选择性反应路径。 ■ 简介
卫星服务的双重使用提出了有关反对其在武装冲突期间功能的合法性的问题。本文的重点是研究国际人道主义法的关键原则的内容,即的区别和相称性,关于它们在空间活动中的应用。在这种情况下,分析了对军事行动的太空服务投入前后评估的标准。还观察到由于违反人道主义法而产生空间碎片云的风险。因此,开发和批准其他方案IV的建议将构成平民物体与军事目标区分开,并确定与攻击成正比的损害的范围和程度,被认为是能够在空间和网络战争期间节省外层空间资源和空间服务的手段。
空腔光学机械系统探索了机械谐振器的光与运动之间的相互作用,其中辐射压力介导了机械谐振器的运动,反之亦然。在1980年代观察到了常规效应,例如生物性和光弹性效应(Resel等,1983; Gozzini等,1985)。得益于低温技术和微/纳米制造技术的进展,腔光系统显示了各种高级应用,从量子接口和量子记忆到量子计量和量子计算。它不仅扩展了量子信息和量子计算的工具箱,而且由于量子状态的宏观特性而有可能探索量子力学的基础。
关键词:光刻热点、GaAs 蚀刻、SiN 沉积、工艺集成 摘要 光刻技术能否持续对精细几何图形进行图案化,主要挑战之一是整个晶圆和加工场内的最佳焦点存在差异。晶圆图案化侧的这些差异通常是可以理解的,可以很好地表征,并且在选择和优化焦点设置时可以进行校正。然而,晶圆背面的意外和变化的畸形会影响曝光过程中的场平衡(由于基板高度差异而导致的焦点偏移)。这会导致存在污染的地方图案分辨率较差。这些缺陷通常被称为“热点”。在本研究中,研究并表征了一种具有可重复双重像差的故障模式。结果表明,由于一种由 Si x N y 沉积和 GaAs 湿法蚀刻组成的新型集成缺陷模式,形成了意想不到的背面台面。然后,这些台面在金属互连光刻过程中产生热点,导致产量损失 1% 或更多。本研究证明了检测、表征和最小化图案化畸变对于持续改进器件、提高产量和降低化合物半导体制造成本的重要性。引言光刻是半导体行业中不可或缺的技术,是蚀刻、沉积和离子注入的前身[1-4]。保持正确且一致的聚焦和剂量控制对于确保侧壁角度和特征尺寸以满足器件功能和可靠性需求至关重要[2]。因此,先进的光刻技术对于实现器件性能和提高半导体行业的芯片产量至关重要[5]。使用浸没式光刻、双重或多重图案化、分辨率增强技术等创新方法,可以在阿贝衍射极限的几分之一处对器件特征进行图案化[1,6-8]。除了实现更密集的图案化和更小的特征尺寸外,稳健的光刻部署还面临着许多实际挑战[5,9-11]。其中一个挑战是