摘要:鉴于最近人们对纳米长度尺度上的光诱导磁性操控的兴趣日益浓厚,这项工作提出金属团簇是产生全光超快磁化的有前途的基本单元。我们使用时间相关密度泛函理论(TDDFT)在实空间中通过从头算实时(RT)模拟对金属团簇的光磁特性进行了理论研究。通过对原子级精确的简单金属和贵金属团簇中圆偏振激光脉冲等离子体激发的从头算计算,我们讨论了由于光场在共振能量下通过光吸收转移角动量而产生的轨道磁矩。值得注意的是,在近场分析中,我们观察到感应电子密度的自持圆周运动,证实了纳米电流环的存在,由于团簇中的逆法拉第效应(IFE),纳米电流环产生轨道磁矩。研究结果为理解量子多体效应提供了宝贵见解,该效应影响金属团簇中 IFE 介导的光诱导轨道磁性,具体取决于金属团簇的几何形状和化学成分。同时,它们明确展示了利用金属团簇磁化的可能性,为全光磁控领域提供了潜在的应用。
等离子体学是凝聚态物理学中的一个技术前沿术语,它描述表面等离子体共振,其中表面等离子体是限制在电介质-金属界面的集体电子振荡,这些集体激发与光相互作用表现出显著的等离子体特性。表面等离子体基于纳米材料及其结构;因此,半导体、金属和二维 (2D) 纳米材料由于独特的限制而表现出不同的等离子体效应。二维超薄材料表征和材料制造方面的最新技术突破因其非凡的等离子体增强特性而引起了材料行业的兴趣。二维等离子体材料由于其超薄和强发光特性而在光子和光电子器件应用方面具有巨大潜力,例如:光伏、透明电极和光电探测器。此外,二维等离子体材料的光驱动反应对未来能源的产生是环境友好的,对气候友好的,这使得它们在能源应用方面极具吸引力。本章旨在介绍等离子体二维材料(石墨烯、氧化石墨烯、六方氮化硼、氮族元素、MXenes、金属氧化物和非金属)的最新进展及其应用潜力,并分为几个部分来阐述最近的理论和实验发展以及光子学和储能行业的潜力。
摘要:对未来电子应用的原子较薄的半导体对单层(1L)硫属(例如MOS 2)(例如化学蒸气沉积(CVD)生长)非常关注。然而,关于CVD生长的硒的电性能,尤其是Mose 2的报告很少。在这里,我们比较了CVD生长的1L和BiLayer(2L)Mose 2的电性能,并由子材料计的ALO X封顶。与1L通道相比,2L通道表现出约20倍较低的接触电阻(R C)和〜30倍的电流密度。r c通过ALO X封盖进一步降低> 5×,这可以提高晶体管电流密度。总体而言,2L ALO X盖的Mose 2晶体管(约500 nm的通道长度)可提高电流密度(在V DS = 4 V时约为65μM /μm),良好的I ON / I ON / I ON / I ON / I OFF> 10 6,R C为约60kΩ·μm。 1L设备的性能较弱是由于它们对处理和环境的敏感性。我们的结果表明,在不需要直接带隙的应用中,2L(或几层)比1L更可取,这是对未来二维电子产品的关键发现。关键字:丙象钼,单层,双层,接触电阻,晶状体效应晶体管,氧化物封盖,掺杂,2D半导体
摘要:由于多体效应和较强的电子 - 电子相互作用,准二维材料(例如碳纳米管)中电子带隙和激子结合能的测量很具有挑战性。与众所周知的电子带隙的散装半导体不同,低维半导体中的光学共振由激子主导,使其电子带隙更难测量。在这项工作中,我们使用非理想的P-N二极管测量了聚合物包裹的半导体单壁碳纳米管(S-SWCNTS)网络的电子带隙。我们表明,由于界面陷阱状态的存在,我们的S-SWCNT网络具有较短的少数载体寿命,从而使二极管非理想。我们使用来自这些非理想二极管的生成和重组泄漏电流测量具有不同直径的不同聚合物包裹的S-SWCNT的电子带隙和激子水平:ARC放电(〜1.55 nm),(7,5),(7,5)(0.83 Nm),(0.83 Nm)和(6,5),(6,5,76 nm)(0.76 nm)。我们的价值观与理论预测一致,从而深入了解S-SWCNT网络的基本属性。此处概述的技术展示了一种可靠的策略,可以应用于测量各种纳米级和量子限制的半导体的电子带隙和激子结合能,包括依赖于纳米线的最现代的纳米晶体管。
摘要:金属纳米图案在利用纳米级电传导的应用中无处不在,包括互连、电纳米接触和金属垫之间的小间隙。这些金属纳米图案可以设计成显示其他物理特性(光学透明性、等离子体效应、铁磁性、超导性、散热等)。出于这些原因,深入研究使用简单工艺的新型光刻方法是实现高分辨率和高吞吐量金属纳米图案的关键持续问题。在本文中,我们介绍了一种简单的方法,通过聚焦的 Ga + 束有效分解 Pd 3 (OAc) 6 旋涂薄膜,从而得到富含金属的 Pd 纳米结构。值得注意的是,使用低至 30 μ C/cm 2 的电荷剂量就足以制造金属 Pd 含量高于 50% (at.) 且具有低电阻率 (70 μ Ω · cm) 的结构。二元碰撞近似模拟为这一实验发现提供了理论支持。这种显著的行为用于提供三种概念验证应用:(i) 创建与纳米线的电接触,(ii) 在大型金属接触垫之间制造小 (40 纳米) 间隙,以及 (iii) 制造大面积金属网格。讨论了聚焦离子束直接分解旋涂有机金属薄膜对多个领域的影响。关键词:聚焦离子束、旋涂有机金属薄膜、电接触、纳米间隙电极、大面积网格■ 简介
石墨烯通常是由蜂窝状晶格上的哈伯德模型描述的。作为该模型的开创性工作,Sorella和Tosatti阐明了从半含量(SM)到抗磁性莫特绝缘子(AFMI)的量子相变,后者发生在相互作用的有限强度下[1]。他们进一步预期他们的发现可能与“ 2D石墨中π电子系统中强相关性的物理学相关” [1]。稍后,在合成石墨烯[2]之后,不仅是特殊的非互动带结构[3,4],而且在狄拉克电子中的多体效应及其随之而来的量子相位序列也得到了强烈的介绍[5-9]。首先通过旋转液相[10-16]的可能性而刺激了其中一些研究,然后是高能物理学中的石墨烯物理学与著名的毛类模型之间的有趣联系[17 - 23]。虽然相互作用对石墨烯的影响至少在某种程度上是基于晶格模型的理解,但石墨烯中AFMI的实验实现,这对于将来的设备应用[24]非常有前途,但尚未确定。但是,这并不一定证明石墨烯根本是微弱的。在对石墨烯的模型参数的许多可用估计中[25 - 31],采用了u 00 = 9的部分筛选现场库仑相互作用。3EV [29]和t≈2的跳跃积分的广泛接受值。7EV [25,26],我们注意到它们的比率不远低于Hon-Eycomb晶格U C /T≃3上Hubbard模型的临界点。8 [13,22,23,32 - 34]。 这使我们期望通过施加压力来实现AFMI,8 [13,22,23,32 - 34]。这使我们期望通过施加压力来实现AFMI,
闪烁噪声通常被视为本质上最普遍的噪音(参见,例如,参考文献。[1 - 4])。它也可以实现实验性访问并进行了广泛的研究。然而,实际上,射击噪声是用于量子传输和相关多体效应的基本表征的主要噪声。这是由于其相对小信号所涉及的射击噪声所涉及的挑战。具体而言,量子相干调节器中电子电导和射击测量的组合已被广泛用于提取有关量子传输的信息。例如,这种测量在分析分数量子霍尔效应[5,6],近距效应[7,8],自旋极化的量子传输[9-14],电子 - phonon相互作用[15-18]中起着核心作用,并在揭示了局部原子结构对原子质和分子的影响方面[19-14]电子射击噪声是信息的有用来源,因为它取决于传输通道的分布,这决定了Landauer形式主义框架中的量子传输[25]。对于ev≫k b t,[12,25] ssn¼2eif给出了射击噪声在传输通道上的功率谱密度的依赖性,其中f¼½piτiτið1 -τið1 -τi= p iτi是fano因子是fano因子,并且τi是i th ins of the th ins of the th频道的传输可能性( Boltzmann的因子;考虑电导G对传输通道的明显依赖性[25],g¼g0 piτi,其中g0¼2e 2 = h是电导量子(H,Planck的常数),射击噪声和电导可以提供有关量子轴承中传输通道分布的信息,并允许多个量子相互作用的探索量量的量化量。
核苷酸结合亮氨酸重复(NLR)型的免疫受体构成了动植物的基本元素和动物先天免疫系统(表1)。动物NLR响应并介导与病原体或危险相关的分子模式(PAMP或DAMPS)的相互作用[1]。在植物中,病原体识别的任务被分配在细胞内NLR和细胞表面模式识别受体(PRR)之间。虽然植物NLR会经过分泌的病原体效应子或其在宿主细胞中的活性,但PRR识别PAMP [2]。动物和植物NLR在核心核定核结合和低聚域(NOD)和富含亮氨酸的重复(LRR)域内具有相似的多域结构。但是,在C和N末端附件域上存在实质性多样性[3]。在植物中,NLR基于其在N末端的结构域组成及其在免疫反应中的功能进行分类。nlr携带盘绕线圈(CNL)或Toll/ interuekin 1受体(TIR)型域(TNLS)可以通过感知效应器充当传感器(TNLS),而CNLS的子集(HNLRS)的子孔(HNLRS)的子集(HNLRS)均具有下降症状,而demnls n imply nimns imply nimn imman imman from imman imman imply imply imman impls impls impls imman imman [ - 7]。在动物NLR中,N末端结构域属于死亡折叠的超家族,主要包括吡啶和卡域[8](图1)。在动物中,NLR的N末端结构域通常具有卡片或吡啶结构域。在识别潮湿或弹药的识别后,动物NLR核定成杂体炎性体复合物。例如,含吡啶的NLRP3炎症体为
摘要 — 快速可靠的优化轨道转移计算方法对于初始阶段的项目至关重要。它们可以对推进子系统(卫星设计的主要组件之一)进行初步的、现实的规模估算。这篇论文由 ReOrbit Oy 完成,提出了一种最短时间的最优轨道,用于将微型卫星从 GTO 轨道提升到 GEO,假设通过电力推进连续发射。根据此模拟得出的 ∆ v 要求,选择合适的电力推进系统,并详细说明其配置在燃料和推力要求方面的设计。这是通过考虑轨道提升带来的主要贡献,以及 10 年寿命期间每天进行两次的轨道机动所产生的附加物,如位置保持修正和反作用轮去饱和。优化方法是低推力轨道机动的直接-间接混合方法,采用庞特里亚金最小原理将其转录为非线性规划问题。利用 Lyapunov 控制理论获得启动优化器所需的初始猜测。实施轨道平均技术,能够在优化过程中快速计算多条轨迹。动态模型包括 J 2 纬向谐波、太阳辐射压力、太阳和月亮的第三体效应以及高达 1500 公里的大气阻力等干扰。利用圆柱形阴影模型评估日食条件,因为在地球阴影中,太阳能电力推进会经历零推力期。电力推进系统配置是通过权衡研究和不同供应商之间的比较来确定的。选定的方案包括 4 个氙气推进器,配备互补的电源处理单元和推进剂管理系统,总转移时间不到 4 个月。通过在 GEO 中改变推进器的配置,转移轨迹和在轨机动都使用相同的推进系统。
随着工业革命期间蒸汽机的广泛应用,热力学作为一门物理理论应运而生,它能够描述和优化这些设备的性能 [1]。虽然现代热力学已远远超出了其原有的范围,但热机仍然是研究热力学机制的经典系统。热机不仅具有明确的实际应用,而且还为研究系统热力学性质如何演变提供了一种范例——应用范围从生物过程、气候系统到黑洞 [2-4]。量子系统受固有涨落和明显的非平衡性影响,为应用热力学框架带来了新的挑战 [5]。尽管如此,量子热机 [5,6] 为以易于理解的方式研究量子系统中的热力学行为提供了天然的基础。例如,在等容冲程中,总能通过能量的变化找到热量,就像在等熵冲程中可以通过能量的变化找到功一样 [7]。这或许可以解释为何有大量研究试图通过利用量子资源来提高发动机性能,包括相干性[8-15]、测量效应[16]、压缩储层[17-19]、量子相变[20]和量子多体效应[15,21-23]。其他研究则探讨了量子热机与经典热机之间的根本区别[24–26]、有限时间循环[13、27、28]、利用捷径实现绝热[12、22、23、29–33]、非热状态下的操作[34、35]、非马尔可夫效应[36]、磁系统[37–42]、非谐势[43]、光机械实现[44]、量子点实现[38、40、42]、二维材料中的实现[38、41]、与量子系统耦合的经典引擎[45]、量子冷却[46、47]、相对论系统[48、49]、简并效应[ 39、50],以及