摘要 系统性低频振荡 (sLFO) 是频率为 0.01–0.15 Hz 的非神经元振荡。这些 sLFO 以对称(横跨身体中线)和高度可预测的延迟穿过整个身体和大脑,可以通过功能性近红外光谱 (fNIRS) 和血氧水平依赖性功能性磁共振成像观察到它们。它们的特性可作为检测和监测循环功能障碍的有用生物标志物。纯 sLFO 可以在外围(例如手指、脚趾、耳垂)收集。在这里,我们介绍了一种用于检测和分析外围 sLFO 的 7 通道 NIRS 血氧仪 [MNO],我们将其命名为并发连续波 fNIRS 系统 (CON-CW fNIRS)。我们的 CON-CW fNIRS 体积小(10 9 10 9 20 cm 3 ),便携性高,功耗低,性价比高(低于 300 美元)。我们表明,我们的设备非常可靠,并且可以通过直接比较(r max = 0.908 D [HbO] 和 r max = 0.841 D [Hb])以及与之前发布的数据进行比较,重现使用商用 fNIRS 设备获取的值。
随着超大规模集成电路技术的飞跃发展,综合航空电子设备,集成度越来越高。数据总线对于设备快速、高效、可靠的数据传输具有不可替代的作用。ARINC-429总线是由美国航空电子设备制造商、定期航空公司、飞机制造商以及其他国家航空公司联合成立的航空无线电公司,由各公司制定的一系列统一的工业标准和规范[1-2]。PC/104嵌入式系统具有功耗低、体积小、工作温度范围宽、可靠性高等突出优点[3-5]。早期实现ARINC-429的数据传输方式一般采用MCU控制系统[6-8],但存在通信速率低、时序控制不够灵活的不足,不适合ARINC-429的高速通信。FPGA(Field Programmable Gate Array,现场可编程门阵列)具有工作主频高、可以并行处理数据等优点。针对传统方法的缺点,本文采用FPGA作为定时和译码控制芯片,采用16位数据总线,芯片采用ARINC429,HI-8582总线,使机载通信设备的传输速率达到100kbit/s的高数据率。
有效癌症治疗的目标是高精度地特异性地靶向患病细胞,同时不伤害正常健康细胞。在过去的三十年中,免疫疗法已被证明是一种重要的癌症治疗策略,该疗法基于使用针对肿瘤相关抗原的单克隆抗体 (mAb) 来抑制其致癌功能,或针对免疫检查点来调节针对癌症的特定 T 细胞反应。尽管如此,由于其适用性存在重大缺陷,批准用于临床的 mAb 数量仍然有限。寡核苷酸适体与抗体类似,与其特定蛋白质靶标形成高亲和力键,因此是主动靶向癌症的有效工具。与抗体相比,适体作为治疗剂的使用得益于其体积小、免疫原性低/无免疫原性、合成简单和设计灵活性,可提高功效和稳定性。本综述旨在强调适体作为识别元素的近期应用,从生物标志物发现到靶向药物输送和靶向治疗,展示适体与抗体协同作用从多个侧面攻击癌症的潜力。
摘要 本文介绍了一种 H 形微带贴片天线的设计,用于评估甲状腺癌细胞检测的 SAR(特定吸收率)。该天线灵活,适用于可穿戴应用。当天线放置在人体甲状腺上时,性能可能会发生变化。测量了回波损耗、增益、VSWR 等参数。天线有不同的种类,但微带贴片天线具有成本低、体积小、重量轻等特点。FR-4(有损)用作基板以克服低增益和高回波损耗。贴片导体由铜材料制成,形成柔性天线。所提出的天线设计为 1g 带肿瘤组织提供了 0.0199W/Kg 的高 SAR 值。由于癌细胞含有更多的水分,因此可以在所提出的天线设计中改变各种参数的性能。所提出的天线的增益值为 16.452GHz 时的 6.36 dB。所提出的 H 形和 H 形垂直缝天线的甲状腺模型是使用 CST(计算机仿真技术)微波工作室工具设计的。关键词:电压驻波比、回波损耗、增益、特定吸收率
农用无人机集机器人、人工智能、大数据、物联网等技术于一体,被广泛应用于播种、地块监测、作物病虫害检测、农药化肥喷洒等各类农业作业,大大提高农业生产效率、解放劳动力(Kim et al.,2019),正在成为精准农业航空领域的一股生力军(Wang et al.,2019)。与传统农业机械相比,农用无人机具有体积小、重量轻、便于运输,飞行控制灵活等特点,具有作业精准、高效、环保、智能、使用方便等特点。但很多时候,飞行过程中农用无人机载荷的实时变化会影响其速度、精度和飞行轨迹稳定性。徐建军等(2019)指出,农用无人机在作业过程中应时刻保持良好的飞行姿态,提高作业效率。魏等提出了一种使用 PID 控制器和鲁棒 TS 模糊控制方法实现 AUAV 飞行轨迹稳定性的飞行动力学模型。对于不同的飞行条件,该模型可以在飞行路径中实现一定的稳定性,以抵抗负载扰动。
CjCas9 体积小,更容易载体化用于体内基因治疗。然而,与 SpCas9 相比,CjCas9 在靶基因中产生插入/缺失的效率通常较低。影响其功效的因素尚未确定。我们观察到,在 CMV 启动子下将该转基因转染到 HEK293T 细胞后,CjCas9 蛋白的表达量远低于相同条件下的 SpCas9 蛋白。因此,我们评估了蛋白酶体抑制剂对 CjCas9 蛋白稳定性及其对 FXN 基因编辑效率的影响。Western 印迹显示,添加 MG132 或硼替佐米可显著提高 HEK293T 和 HeLa 细胞中的 CjCas9 蛋白水平。此外,硼替佐米增加了在比 CMV 弱但对某些组织具有特异性的启动子(如 CBH 或 EFS)下表达的 CjCas9 蛋白的水平。最后,ddPCR定量分析显示硼替佐米处理增强了CjCas9在HEK293T细胞中敲除FXN基因GAA重复序列的效率,CjCas9蛋白稳定性的提高有利于其在CRISPR/Cas系统中的应用。
胶质瘤是一种常见的癌症,会影响中枢神经系统。尽管有标准化的治疗方案,包括手术切除、同步放疗和辅助替莫唑胺 (TMZ) 治疗,但胶质瘤患者的预后通常不容乐观。外泌体充当细胞间通讯的载体,有助于组织修复、免疫调节和将代谢货物转移到受体细胞。然而,异常物质的传输也会导致癌症、代谢疾病和神经退行性疾病等病理状态。肿瘤学外泌体研究领域取得了重大进展,外泌体被确定为肿瘤细胞增殖、迁移和侵袭以及血管生成和耐药性的动态调节剂。外泌体的细胞毒性可以忽略不计,免疫原性低,体积小,使其成为胶质瘤的理想治疗候选药物。这篇全面的综述讨论了外泌体在胶质瘤中的双重作用,重点介绍了它们在促进耐药性方面的作用。此外,还详细讨论了外泌体在胶质瘤治疗中的临床应用和目前的局限性。
摘要 哺乳动物的智能行为和认知功能依赖于由多种兴奋性和抑制性细胞组成的皮质微电路,这些微电路形成跨越六层的森林状复合体。对皮质微电路的机制理解需要操纵和监测多个层及其之间的相互作用。然而,现有技术仅限于同时监测和刺激不同深度而不损害大量皮质组织。在这里,我们提出了一种相对简单且通用的方法,用于同时将光传送到任意两个皮质层。该方法使用一个微型光学探头,该探头由安装在单个轴上的两个微棱镜组成。我们通过三组实验展示了探头的多功能性:第一,通过光遗传学独立操纵两个不同的皮质层;第二,刺激一层同时监测另一层的活动;第三,在清醒小鼠中同时监测分布在两个不同皮质层中的丘脑轴突的活动。该探针设计简单、用途广泛、体积小、成本低,可广泛应用于解决重要的生物学问题。
摘要 — 本文介绍了一种体积小、功耗低的毫米波相控阵接收机前端。本振 (LO) 和射频 (RF) 相移方案相结合,用于降低功耗和 RF 路径损耗。此外,在有源电路的实现中,采用了体隔离技术,以最少的级数实现更高的功率增益。该技术还用于 RF 路径移相器开关以减轻损耗。为了验证所提出的架构,采用 65 nm 体 CMOS 工艺制造了一个单元件 56 至 66 GHz 相控阵接收机前端。根据测量结果,接收机实现了 ∼ 14.85 dB 的功率增益和 5.7 dB 的最小噪声系数 (NF)。测得的平均 RMS 相位和增益误差分别为 ∼ 3.5 ◦ 和 ∼ 0.45 dB。接收器链的输入 1dB 压缩点 (P − 1dB ) 约为 − 19 dBm。完整的接收器(包括有源平衡-不平衡转换器和所需缓冲器(不包括 LO))在 1 V 电源下消耗约 50 mW 功率,不包括焊盘,占用硅片面积为 0.93 mm 2 。
Azure RTOS 和 MXCHIP IoT DevKit 作者:Sean D. Liming 和 John R. Malin Annabooks – www.annabooks.com 2023 年 5 月 有许多 Azure RTOS 在线指南可帮助您开始使用不同的平台。MXCHIP IoT DevKit 是首批演示如何连接到 Azure IoT Central 的平台之一。如果您按照快速入门在线文档操作,您将能够从命令行构建示例应用程序并运行它。如果您想使用示例应用程序作为项目的基础,那么能够使用调试器逐步执行代码将非常重要。在本文中,我们将介绍示例,但设置开发环境以使用 Visual Studio Code。MXCHIP 生产的 ARM Core + Wi-Fi 模块体积小,适合资源受限的应用程序。MXCHIP IoT DevKit 是一个演示云连接的示例平台。主板文档很简略,有点令人困惑。板上的实际目标 ARM 核心来自 ST Microelectronics:STM32F412 - Arm® Cortex®-M4,内置于 MXCHIP 模块中,但文档中提到 STM32F103CBT6 - Arm® Cortex®-M3,用于 STLINK 片上调试器。请注意,此演示平台中存在一些类似这样的小差异。