摘要:随着科技的不断进步,用于增强现实(AR)和虚拟现实(VR)的电子产品逐渐进入大众的视野,这些电子设备的电源也受到了科学家的更多关注。与传统电源相比,摩擦纳米发电机(TENG)由于体积小、转换效率高、能耗低等优点,逐渐被用于可穿戴柔性电子产品,包括AR和VR设备等自供电传感技术中的能量收集,是AR和VR产品中最受欢迎的电源。本文首先概括了TENG的工作方式和基本理论,然后回顾了AR和VR设备中使用的TENG模块,最后总结了TENG制备的材料选择和设计方法。TENG的摩擦层可以由聚合物、金属和无机材料等多种材料制成,其中聚四氟乙烯(PTFE)和聚二甲基硅氧烷(PDMS)是最受欢迎的材料。要提高TENG的性能,必须选用合适的摩擦层材料。因此,针对不同的应用场景,TENG的设计方法对其性能起着重要作用,合理的制备材料和设计方法的选择可以大大提高TENG的工作效率。最后,总结了纳米发电机的研究现状,分析并提出了未来的应用领域,并总结了材料选择的要点。
i. 通风:本设备体积小,结构紧凑,输出电流性能优良。风扇用于在焊接/切割操作过程中散发本设备产生的热量。重要提示:保持本设备百叶窗的良好通风。本设备与工作区域内或附近的任何其他物体之间的最小距离应为 30 厘米。良好的通风对于本设备的正常性能和使用寿命至关重要。ii. 热过载保护:如果机器使用过度,或在高温环境、通风不良区域使用,或者风扇发生故障,热过载开关将被激活,机器将停止运行。在这种情况下,请保持机器开启,以保持内置风扇运转,降低设备内部温度。当内部温度达到安全水平时,机器将再次准备就绪。iii. 过压电源:有关机器的电源电压范围,请参阅“主要参数”表。本设备具有自动电压补偿功能,可使电压范围保持在给定范围内。如果输入电源安培数的电压超过规定值,可能会损坏本设备的部件。请确保您的主电源正确。iv.机器运行时,请勿接触输出端子。可能会发生触电。
摘要 由于其多种优势(尤其是体积小、重量轻),电力电子变压器在铁路应用中引起了显著的关注。本文主要致力于开发一种基于完全可编程门阵列 (FPGA) 的电力电子变压器控制平台,用于上述应用中。由于 FPGA 的并行处理可以加快控制算法的执行速度,因此可以保证可靠的运行(这在牵引应用中至关重要)。为此,构建了一种输入串联输出并联电力电子变压器结构,并在 Xilinx FPGA 控制平台上设计和实现了电力电子变压器在牵引应用中可靠稳定运行的各种考虑因素,例如安全启动和双向功率流,以及所需的控制和脉冲生成方案。此外,还提出了一种改进的控制算法,以便以简单、更可靠的方式控制电力电子变压器。该控制方案基于DC-DC-LLC谐振变换器的输出电压而开发,能够有效地控制整流器直流母线电压之和并跟踪输入正弦参考电流,并且所需的传感器数量较少。最后,通过实验测试从各个方面检验了该方案的有效性。
2014 年,当伊斯兰国使用无人机 (UAV) 袭击联军时,无人机的使用范围迅速扩大,使弱国和非国家行为者相对于技术上更先进的敌人拥有不对称优势。这种不对称性导致国防部 (DOD) 和国土安全部 (DHS) 投入巨额资金用于反无人机系统 (C-UAS)。尽管市场密度很高,但许多 C-UAS 技术都使用昂贵、笨重且耗电高的电子攻击方法进行地对空拦截。本论文概述了当前用于 C-UAS 的技术,并提出了使用配备网络攻击功能的机载 C-UAS 巡逻的纵深防御框架。本论文利用空中拦截技术开发了一种新型 C-UAS 设备,称为可拆卸无人机劫持器,这是一种体积小、重量轻、功率大的 C-UAS 设备,旨在使用 IEEE 802.11 无线通信规范对商用无人机进行网络攻击。实验结果表明,可拆卸无人机劫持器重 400 克,功耗为 1 瓦,成本为 250 美元,可以拦截敌方无人机,不会造成意外附带损害。本论文建议国防部和国土安全部采用空中拦截技术来支持其 C-UAS 纵深防御,使用类似于可拆卸无人机劫持器的技术。
摘要 蓟马是重要的农业害虫,通过取食和传播植物病毒对农作物造成广泛损害,造成了巨大的经济损失。有效的 DNA 提取对于分子鉴定和病毒检测至关重要,但由于其体积小、角质层坚硬以及受到植物衍生物质的污染,提取 DNA 往往具有挑战性。已经开发出各种 DNA 提取方法来应对这些挑战,包括碱裂解、酶消化、基于有机溶剂的方法和旋转柱技术。碱裂解法是一种快速且经济有效的解决方案,可产生适用于 PCR 等应用的 DNA,但可能需要额外的纯化才能进行灵敏的分析。酶消化使用蛋白酶 K 等试剂,可确保获得相对纯净的 DNA,这些 DNA 可以稳定地储存并可用于下游应用。基于有机溶剂的方法,例如 CTAB 与氯仿相分离和酒精沉淀,对于分离高质量 DNA 非常有效,尤其是在含有大量污染物的样品中。基于离心柱的商业试剂盒进一步简化了该过程,通过最大限度地减少杂质,提供具有极高纯度的 DNA,使其成为敏感和高通量应用的理想选择。DNA
小型廉价卫星立方体卫星通常用于进行学术和商业太空研究。通常,立方体卫星没有热控制系统来散发航空电子设备的热量,这会限制机载计算和有效载荷功率。升华器是一种体积小、被动热控制技术,拥有 60 年的飞行历史,可让立方体卫星搭载更强大的计算机并进行更复杂的实验。升华器使用水这种消耗品;它们的尺寸和被动特性对于体积受限且持续时间短的立方体卫星任务特别有用。即使有飞行历史,升华冷却中的热量和质量传递过程的某些方面仍未完全了解。历史和当前的建模工作都做出了需要进一步探索的假设。本文提出了立方体卫星升华冷却技术,回顾了过去和现在的升华器应用,并讨论了过去升华器用途和模型的知识空白和缺点。介绍了加州大学戴维斯分校升华器模型,并进行了初步分析,解决了文献中经常发现的假设。此外,还描述了带有升华器的立方体卫星的整体热控制系统,以及初始升华器尺寸确定程序和示例。
2014 年,当伊斯兰国使用无人机 (UAV) 袭击联军时,无人机的使用范围迅速扩大,使弱国和非国家行为者相对于技术更先进的敌人拥有不对称优势。这种不对称性导致国防部 (DOD) 和国土安全部 (DHS) 投入巨额资金用于反无人机系统 (C-UAS)。尽管市场密度很高,但许多 C-UAS 技术都使用昂贵、笨重且耗电高的电子攻击方法进行地对空拦截。本论文概述了当前用于 C-UAS 的技术,并提出了使用配备网络攻击能力的机载 C-UAS 巡逻的纵深防御框架。本论文利用空中拦截技术开发了一种新型 C-UAS 设备,称为可拆卸无人机劫持器,这是一种体积小、重量轻、功率大的 C-UAS 设备,旨在使用 IEEE 802.11 无线通信规范对商用无人机发动网络攻击。实验结果表明,可拆卸无人机劫持器重 400 克,功耗为 1 瓦,售价 250 美元,可以拦截敌方无人机,且不会造成意外附带损害。本论文建议国防部和国土安全部采用与可拆卸无人机劫持器类似的技术,结合空中拦截技术来支持其 C-UAS 纵深防御。
摘要 纳米材料已成为药物输送系统的一项变革性技术,具有提高治疗效果和安全性的独特性能。纳米材料体积小、表面积大,并且能够进行靶向输送,因此能够提高药物的溶解度、控制释放并减少副作用。本文讨论了用于药物输送的各种类型的纳米材料,包括纳米颗粒、脂质体和树枝状聚合物,重点介绍了它们的作用机制和相对于传统输送方法的优势。尽管纳米材料具有潜力,但它在临床应用中的整合仍面临多项挑战,包括制造可扩展性、监管障碍、生物分布不可预测性以及对毒性和生物相容性的担忧。此外,纳米材料与生物系统之间复杂的相互作用也带来了重大障碍。纳米材料在药物输送中的未来在于创新方法,例如个性化医疗和可生物降解载体,这需要持续的跨学科研究和合作。本综述旨在深入了解纳米材料在药物输送方面的现状和未来前景,强调克服现有挑战以充分发挥其在改善患者治疗效果方面的潜力的重要性。
结果:为了应对这些挑战,我们设计了一种紧凑的无酶表观遗传编辑器,称为 CHARM(偶联组蛋白尾,用于甲基转移酶的自抑制释放)。通过与组蛋白 H3 尾和非催化性 Dnmt3l 结构域直接融合,CHARM 能够募集和激活细胞内源性表达的 DNA 甲基转移酶,以甲基化靶基因。CHARM 可以独立于 KRAB 转录抑制结构域发挥作用,并与多种 DNA 结合方式兼容,包括 CRISPR-Cas、转录激活因子样效应物和锌指蛋白。锌指蛋白体积小,最多可容纳三个 DNA 靶向元件,并有额外的空间容纳调节元件,以赋予细胞类型特异性。当与靶向锌指结构域的朊病毒蛋白结合并通过 AAV 递送到小鼠大脑时,CHARM 会甲基化朊病毒基因启动子,并使全脑神经元朊病毒蛋白减少高达 80%,远远超过治疗效果所需的最低减少量。此外,我们开发了自我沉默 CHARM,它们在沉默靶标后会自主停用。这种方法暂时限制了 CHARM 表达,以避免因非分裂神经元中的慢性表达而导致的潜在抗原性和脱靶活性。
摘要 癌症仍然是全球主要的健康问题,需要现代诊断和治疗技术。纳米粒子 NPs 因其独特的生物医学特性而成为癌症管理的有前途的工具。NPs 的生物学特性使其非常适合成像、靶向药物输送和治疗诊断应用。这些特性包括其体积小、表面积与体积比高和表面灵活。银、铜 (Cu)、硒 (Se) 和钯 (Pd) 等金属基 NPs 在成像、药物输送和靶向治疗领域显示出治疗癌症的良好前景。金属基 NPs 具有独特的优势,例如靶向性提高、药物释放受控和多模态成像特性。NPs 有可能通过早期检测改善癌症诊断,并通过改进的成像方式更精确地表征肿瘤。基因治疗、免疫调节剂和化疗药物都可以通过使用 NPs 灵活输送系统直接输送到肿瘤位置。当 NPs 被靶向配体(如肽或抗体)功能化时,它们可以选择性地与癌细胞结合,从而改善药物积累并减少脱靶效应。刺激响应型 NPs 能够响应肿瘤微环境内的特定刺激而释放治疗粒子,从而改善治疗效果。关键词 癌症、纳米粒子、生物医学特性、铜