稳定、可重复、可扩展、可寻址和可控的混合超导体-半导体 (S-Sm) 结和开关是门控量子处理器的关键电路元件和构建块。分离栅电压产生的静电场效应有助于实现纳米开关,这些纳米开关可以控制基于二维半导体电子系统的混合 S-Sm 电路中的电导或电流。这里,通过实验展示了一种新颖的大规模可扩展、栅极电压可控的混合场效应量子芯片的实现。每个芯片都包含分离栅场效应混合结阵列,它们用作电导开关,由与 Nb 超导电子电路集成的 In 0.75 Ga 0.25 As 量子阱制成。芯片中的每个混合结都可以通过其相应的源漏极和两个全局分离栅接触垫进行控制和寻址,从而允许在其 (超) 导电和绝缘状态之间切换。总共制造了 18 个量子芯片,其中有 144 个场效应混合 Nb-In 0.75 Ga 0.25 As 2DEG-Nb 量子线,并研究了低温下多个器件的电响应、开关电压(开/关)统计、量子产率和可重复性。提出的集成量子器件架构允许控制芯片上大型阵列中的单个结,这对于新兴的低温量子技术非常有用。
对于NISQ超导量子计算机来说,量子比特映射对于保真度和资源利用率至关重要。现有的量子比特映射方案面临诸如串扰、SWAP开销、设备拓扑多样等挑战,导致量子比特资源利用不足和计算结果保真度较低。本文介绍了一种解决这些挑战的新型量子比特映射方案QuCloud+。QuCloud+有几项新的设计。(1)QuCloud+支持2D/3D拓扑量子芯片上的单/多程序量子计算。(2)QuCloud+利用串扰感知社区检测技术对并发量子程序的物理量子比特进行分区,并进一步根据量子比特度数分配量子比特,提高保真度和资源利用率。(3)QuCloud+包含X-SWAP机制,可避免串扰误差较大的SWAP,并支持程序间SWAP以降低SWAP开销。 (4) QuCloud+根据最佳实践的保真度估计来调度要映射和执行的并发量子程序。实验结果表明,与现有的典型多道程序研究[12]相比,QuCloud+可实现高达9.03%的保真度提升,并节省映射过程中所需的SWAP,减少插入的CNOT门数量40.92%。与最近的一项研究[30]相比,该研究通过映射后门优化进一步减少门数量,在使用相似门数量的情况下,QuCloud+将映射后的电路深度减少了21.91%。
4D渐近平坦的空间中的量子重力特征是由于软辐射头发而引起的自发对称性,这与IR差异的增殖密切相关。通过推定的2D CFT的全图描述预计没有此类冗余。在这两篇论文中,我们通过启动天体CFT(CCFT)中量子误差校正的研究来解决这个问题。在第一部分中,我们通过在Kleinian Hyperkhler SpaceTimes中重新审视非交通性几何形状来构建具有有限自由度的玩具模型。该模型遵守朝径向方向重新归一致的灯芯代数,并承认等距嵌入`la gottesman-kitaev-preskill。代码子空间由在柔软的时空波动下可靠的2量稳定态组成。hyperkhler空间的对称性是离散的,并转化为量子计算中熟悉的克利福德组。然后将结构嵌入扭曲空间的发病率关系中,为即将到来的工作中解决的CCFT制度铺平了道路。
摘要:我们提出了一种由二氧化钛 (TiO 2 ) 亚波长光栅制成的双谐振纳米结构,以提高 Cd x Zn 1 − x Se y S 1 − y 胶体量子点 (QDs) 在用 ∼ 460 nm 的蓝光激发时发射波长为 ∼ 530 nm 的颜色下转换效率。通过光栅谐振和波导模式的混合,可以在 QD 层内创建大的模式体积,从而导致大的吸收和发射增强。特别是,我们实现了偏振光发射,在特定角度方向上最大光致发光增强约 140 倍,在收集物镜的 0.55 数值孔径 (NA) 内总增强约 34 倍。增强包括吸收、Purcell 和外耦合增强。我们实现了绿色 QDs 的总吸收率为 35%,颜色转换层非常薄,约为 ∼ 400 nm。这项工作为设计用于微型 LED 显示器、探测器或光伏应用中的吸收/荧光增强的大体积腔体提供了指导。关键词:导模共振、二氧化钛、介电纳米天线、颜色转换、胶体量子点、微型 LED 显示器
新的集体量化气候金融目标(NCQG)是一个新的全球气候融资目标,即当事方作为巴黎协定当事方(CMA)会议的会议应从2025年之前每年1000亿美元设定。这一新目标将在有意义的缓解行动和实施透明度的背景下设定,并考虑到发展中国家的需求和优先事项。审议设定新目标的旨在在可持续发展和消除贫困的努力下加强全球对气候变化威胁的反应,包括使财务流与低温温室气体排放的途径和气候 - 耐候的发展相一致。
III-V 胶体量子点 (CQD) 在红外光电探测中备受关注,CQD 合成和表面工程的最新发展提高了性能。本文研究了光电探测器的稳定性,发现锌离子从电荷传输层 (CTL) 扩散到 CQD 活性层会增加其中的陷阱密度,导致操作过程中性能快速且不可逆地下降。为了防止这种情况发生,本文在 CQD 和 ZnO 层之间引入了有机阻挡层;但这会对设备性能产生负面影响。然后,该设备允许使用 C60:BCP 作为顶部电子传输层 (ETL) 以获得良好的形态和工艺兼容性,并选择 NiO X 作为底部空穴传输层 (HTL)。第一轮基于 NiO X 的设备表现出高效的光响应,但由于针孔而存在高漏电流和低开路电压 (Voc)。本研究将聚[双(4-苯基)(2,4,6-三甲基苯基)胺] (PTAA) 与 NiO X NC 结合形成混合 HTL,这种添加可减少针孔形成、界面陷阱密度和双分子复合,从而增强载流子收集。光电探测器在施加 1 V 偏压时在 970 nm 处实现 53% 的外部量子效率 (EQE),并且在连续照明操作 19 小时后仍保持 95% 的初始性能。光电探测器在货架储存 80 天后仍保持 80% 以上的性能。
III-V胶体量子点(CQD)在红外光检测中引起了人们的关注,CQDS合成和表面工程的最新发展提高了性能。在这里,这项工作调查了光电探测器的稳定性,发现从电荷传输层(CTL)到CQDS活性层的锌离子的差异会增加其中的陷阱密度,从而导致操作过程中快速且不可逆转的性能损失。在防止这种情况下,这项工作引入了CQD和ZnO层之间的有机阻塞层。但是这些对设备性能产生了负面影响。然后,该设备可以使用C60:BCP作为顶部电子传输层(ETL),以实现良好的形态和过程兼容性,并选择NiO X作为底部孔传输层(HTL)。基于Nio X的第一轮设备显示出有效的光响应,但由于针孔引起的高泄漏电流和低敞开电路(VOC)。这项工作介绍了Poly [Bis(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)(PTAA),它使用Nio X NC形成杂种HTL,这是一种减少针孔形成,界面陷阱密度,界面陷阱密度和双肌发射重组,增强载体,增强的载体。在1 V施加偏置的970 nm处,光电探测器在970 nm处实现53%的外部量子效率(EQE),并且在连续照明操作的19小时后,它们保持了95%的初始性能的95%。光电电视机在80天的架子存储后保留了80%以上的性能。
先前的研究表明,call体(CC)和心理理论(TOM)能力之间的联系(ACC)之间存在联系,但健康孩子中CC量与Tom之间的关系仍不清楚。本研究检查了CC数量是否影响儿童在评估假装,情感识别和错误信念的理解的TOM任务上的表现。6-12岁的40名儿童接受了结构磁共振成像(MRI)和认知测试电池。我们发现,CC的较大的中部和中央小节与更好的TOM能力显着相关。我们还可以证明年龄和性别相关的影响,因为CC – TOM的关系在年轻(6-8岁)及以上(9-12岁)的儿童以及女性和男性参与者之间。重要的是,年龄较大的孩子驱动了CC中部和中央小节量和TOM能力之间的关联。这项研究是第一个证明CC大小与健康儿童的能力相关的一项研究,强调了CC在其社会认知发展中起着至关重要的作用。CC小节的体积不仅可以作为已知表现出社会认知缺陷的神经发育群体中异质性的量度,而且还可以作为典型发展的儿童的量度。
摘要:光谱扩散(SD)代表实施固态量子发射器作为无法区分光子来源的实质性障碍。通过在低温温度下对单个胶体量子点进行高分辨率发射光谱,我们证明了量子限制的Stark效应与SD之间的因果关系。通过统计分析发射光子的波长,我们表明,提高过渡能量对应用电场的敏感性会导致光谱波动的扩增。这种关系在定量上适合直接模型,表明在微观尺度上存在随机电场,其标准偏差平均为9 kV/cm。当前方法将使SD在多种类型的量子发射器(例如固态缺陷或有机铅卤化物钙钛矿量子点)中进行研究,对此,光谱不稳定性是量子传感应用的关键障碍。关键字:量子光学元件,胶体量子点,光谱扩散,鲜明效果,激子细胞结构
摘要:本文深入研究了多智能体环境中复杂的量子游戏世界,提出了一个模型,其中智能体利用基于梯度的策略来优化局部奖励。引入了一种学习模型,重点关注智能体在各种游戏中的学习效率以及量子电路噪声对算法性能的影响。研究揭示了量子电路噪声与算法性能之间的非平凡关系。虽然量子噪声的增加通常会导致性能下降,但我们表明,在某些特定情况下,低噪声可以意外地提高具有大量智能体的游戏中的性能。这种见解不仅具有理论意义,而且考虑到当代嘈杂的中型量子 (NISQ) 计算机的固有局限性,也可能具有实际意义。本文提出的结果为量子游戏提供了新的视角,并丰富了我们对多智能体学习与量子计算之间相互作用的理解。强调了挑战和机遇,为量子计算、博弈论和强化学习交叉领域的未来研究指明了有希望的方向。