摘要:本文深入研究了多智能体环境中复杂的量子游戏世界,提出了一个模型,其中智能体利用基于梯度的策略来优化局部奖励。引入了一种学习模型,重点关注智能体在各种游戏中的学习效率以及量子电路噪声对算法性能的影响。研究揭示了量子电路噪声与算法性能之间的非平凡关系。虽然量子噪声的增加通常会导致性能下降,但我们表明,在某些特定情况下,低噪声可以意外地提高具有大量智能体的游戏中的性能。这种见解不仅具有理论意义,而且考虑到当代嘈杂的中型量子 (NISQ) 计算机的固有局限性,也可能具有实际意义。本文提出的结果为量子游戏提供了新的视角,并丰富了我们对多智能体学习与量子计算之间相互作用的理解。强调了挑战和机遇,为量子计算、博弈论和强化学习交叉领域的未来研究指明了有希望的方向。
主要关键词