摘要:集成能量收集器的片上微型超级电容器 (MSC) 对开发自供电无线传感器系统具有巨大潜力。然而,MSC 的传统制造技术与半导体制造技术不兼容,其中最显著的瓶颈是电极沉积技术。利用旋涂技术进行电极沉积已显示出在硅基板上提供多个互补金属氧化物半导体 (CMOS) 兼容 MSC 的潜力。然而,它们在基板上的电化学性能和产量有限一直是阻碍其后续集成的挑战。我们报告了一种简单的表面粗糙化技术,用于提高晶片产量和 CMOS 兼容 MSC 的电化学性能,特别是对于还原氧化石墨烯作为电极材料。在晶片基板上沉积并退火一层 4 纳米的铁层以增加表面粗糙度。与标准的非粗糙 MSC 相比,表面粗糙度的增加使电极厚度增加 78%,质量保持率提高 21%,旋涂电极的均匀性提高 57%,并且在 2 英寸硅基板上工作器件的产量高达 87%。此外,这些改进直接转化为更高的电容性能,并具有增强的速率能力、能量和功率密度。这项技术使我们更接近于在片上无线传感器电子设备的自供电系统中完全集成的 CMOS 兼容 MSC。
医院的电力供应问题特别重要,因为它直接影响人们的健康状况和重要的治疗和护理措施。医院是能耗较高的建筑之一。在其能源供应中使用可再生能源的可能性是专家们遇到的问题和挑战之一。本文讨论了在医院屋顶安装小型太阳能发电装置以提高供电系统质量的可能性。案例研究是位于伊朗德黑兰的一家医院。为此,使用 Design-Builder 软件对医院能源系统进行了建模。根据医院能源账单中指定的模型实际消耗情况验证了获得的结果。根据建模步骤的结果,当前能源系统的年消耗量为 3.08 GWh 电力和 4.23 GWh 天然气。在第二步中,使用 PVsyst 软件为医院屋顶设计了一个由光伏板和电池组成的可再生能源发电装置。设计的发电机组每年可生产 132 MWh 的太阳能,其中 85 MWh 可出售给主电网。使用 HOMER Pro 软件对拟议系统进行了技术经济和环境可行性研究。评估结果表明,考虑到项目的 20 年寿命,拟议系统比现有系统实现了更低的能源成本和更低的净现值成本。考虑排放惩罚的模型环境评估表明,拟议系统向环境中排放的污染气体比现有系统少。还采用敏感性分析来研究贴现和柴油价格变化对系统能源成本的影响。结果显示,贴现率增加 4% 导致项目能源成本增长 14%。此外,预期通胀率的提高与项目净现值提高之间存在直接关系。
尺寸 完全符合 AS/NZS 要求 尺寸足够,可以有效地安装、操作、检查和维护所有设备、硬件和辅助设备。提供安装未来设备的空间。 布置 位于地面以上的混凝土基础上。 控制室应内部布置(机架)来安装和固定与 EMS3000、Element flex 以及 PSU、UPS 和配电板相关的网络交换机和设备 类型 预制模块化建筑,尺寸合适,可以容纳开关设备、控制、保护、通信和 AC/DC 供电系统以及相关的 SCADA 和 RTU 系统接口(视情况而定) 建筑材料 金属框架支撑结构;外部异型金属墙和屋顶覆层;内部金属覆层墙到天花板衬里;带有合适覆盖物的重型防火地板材料;和内部防火绝缘填充物。建筑中不得使用木材。 检修门 - 设备最小宽度 1.3 米,双门,可上锁,带有紧急内部逃生门。金属框架和金属覆层隔热门。不少于 1 个。防火等级 所有墙体、屋顶和楼板系统,包括贯穿件(例如门、通风口等)的防火等级(将火势控制在建筑内部,并防止火势从外部向内部蔓延)应由承包商的设计开发和项目 HAZOP 确定,并由承包商进行的火灾风险评估证实。 通风 最好采用正压通风 配备重型高效过滤装置的运行和备用系统。 空调 应提供分体式空调机组,包括一个完整的备用机组。 应提供带有远程状态监控通信设施的空调系统性能和设备状态。 设计 建筑内部空气温度 最高设计条件下为 23 o C ±2 o C
长寿命自主便携式和可穿戴设备越来越多地出现 [1-8],对系统小型化和降低功耗的要求使高效电源管理单元 (PMU) 的设计成为首要问题,其中低压差 (LDO) 稳压器发挥着关键作用 [9-13]。如图 1 所示,在电池供电系统中,在电池电压和偏置特定系统模块所需的负载电流发生大幅变化的情况下,LDO 会从电池电压 V BAT 产生稳定、低噪声和精确的电源电压 V out ,通常会使用多个 LDO 来优化每个模块的功耗,从而优化整体电源效率。传统 LDO 依靠位于输出节点的外部 µ F 电容来保证稳定性,同时尽量减少瞬态工作下 V out 的变化 [14-16]。尽管如此,系统功率和尺寸的降低正导致完整的片上系统 (SoC) 设备的发展,其中所有组件都需要完全集成。实施低成本片上系统解决方案的一个关键条件是与互补金属氧化物半导体 (CMOS) 技术的兼容性。这反过来又与低压合规性有关,因为随着 CMOS 技术的缩小,电源电压也会缩小,非常接近 MOS 晶体管的阈值电压,因此在设计这种低压电路时必须遵循新策略。因此,无 CMOS 电容器低压差稳压器的设计已成为一个有前途的研究课题,需要低压架构和替代的片上补偿技术,以保持系统在整个工作范围内的稳定性,同时保持调节性能。此外,便携式设备的一个关键参数是功耗,因为它决定了电池寿命。这意味着使用低静态电流 I q 。然而,降低 Iq 会降低动态性能:最大输出电流受到限制,从而限制了诸如转换速率和稳定时间等参数。这就需要引入瞬态增强电路技术来平衡动态性能,同时将对功率效率和电路复杂性的影响降至最低。
在微观尺度和纳米级的自动系统,这些系统结合了传感器,计算和无线数据通信,可以实现变革性网络,以实现健康,安全性并丰富我们的生活。物联网(IoT)已经在包括智能家居,医疗设备,制造业,基础设施和运输等领域的社会中改变了社会。目前有数十亿个连接的IoT设备,估计2020年每秒每秒连接到Web(Maayan,2020年)。将网络物理系统的尺寸缩小到毫米尺度及以下是物联网的持续进展,称为微小事物的互联网(IOT 2)或Nano Internet(IOT 2)或具有全新的功能和应用空间,其数量,密度,密度和集成能力在这些减小的尺寸上,因此具有全新的功能和应用空间。在这项工作中,我们将使用IoT 2一词来包括纳米级和微观尺度上的所有亚毫米系统。IoT 2系统是通过包括低功率电路和异质整合在内的进步组合来实现的(Oh等,2019)。这些小型自主设备通常被称为“智能灰尘”愿景的一部分(Warneke等,2001)。将能力和能源传递到自主系统是其成功的关键要求。有多种解决方案可用于系统的电力和能量传递,以大约厘米尺度,较大,包括电池供电系统,直接有线连接和无线功率传递。本文将总结功率,能源和考虑因素,因为系统是However, scaling dimensions below a centimeter presents new challenges such as rapidly decreasing ef fi ciency of wireless power transfer at millimeter and smaller dimensions ( Rabaey et al., 2011 ), while the system constraints for IoT 2 devices cannot utilize conventional integration technologies involving printed circuit boards, current battery technologies, or physically accessible ports for wired connections (e.g., universal serial bus).这些系统所需的近似功率密度是基于最近的MM尺度系统的100 nw/mm 2阶。
所有介电材料都具有电活性,即能够在施加的电场作用下改变其尺寸或形状。(Dang et al, 2012) 电活性聚合物 (EAP) 及其聚合物纳米复合材料由于其低模量、高应变能力、易于低成本加工和可定制的机电耦合特性,特别适用于从致动器、传感器到发电机等应用。通常,EAP 诱导的应变能力比刚性和易碎的电活性陶瓷高两个数量级。与形状记忆合金和聚合物相比,它们显示出更快的响应速度。(Yuan et al, 2019) 由于这些特性,EAP 可以与生物肌肉相媲美,并长期被称为“人造肌肉”。(Bar-Cohen, 2002) 社区甚至发布了一项挑战,要求开发一种由人造肌肉驱动的机械臂,以赢得与人类对手的腕力比赛。除了致动器之外,EAP 还显示出其在传感应用中的潜力,例如触觉传感、血压和脉搏率监测以及化学传感。(Wang 等人,2016 年)此外,EAP 甚至可以作为发电机中的关键活性材料。随着便携式电子设备(例如无线传感器和发射器)和无线微系统的功能不断增加,其能量需求也急剧增加。而电池的使用由于环境问题和有限的使用寿命而很麻烦,因此需要定期更换。解决这一挑战的明显解决方案是开发完全依赖从人体或周围环境中获取的能量的自供电系统。EAP 已被证明能够获取振动机械能(Lallart 等人,2012 年)和海浪能(Jean 等人,2012 年)。EAP 可以根据其所属的晶体类别(即中心对称或非中心对称)分为不同的亚组。当具有对称中心的介电材料受到电场刺激时,对称性将抵消阳离子和阴离子的运动,不会导致晶体的净变形。然而,化学键不是谐波的,键的非谐性会引起二阶效应,导致晶格的净变形很小。(Vijaya,2013)发现变形与电场的平方成正比,与电场的方向无关。这种效应称为电致伸缩。由于这种非谐波效应存在于所有介电体中,因此所有介电体都是电致伸缩材料。
性能因使用,配置和其他因素而异。在www.intel.com/performanceIndex上了解更多信息。基于预生产系统和组件的结果以及使用英特尔参考平台(内部示例新系统),内部Intel分析或体系结构仿真或建模的结果,仅出于信息目的提供给您。结果可能会根据对任何系统,组件,规格或配置的未来更改而有所不同。AI功能可能需要软件或平台提供商的软件购买,订阅或启用,或者可能具有特定的配置或兼容性要求。详细信息,请访问www.intel.com/aipc。IntelVPro®平台的所有版本都需要合格的Intel处理器,受支持的操作系统,Intel LAN和/或WLAN Silicon,固件增强功能以及其他必要的硬件和软件,以交付定义平台的管理性用例,安全功能,系统性能,系统性能和稳定性。有关详细信息,请访问www.intel.com/performance-vpro。编解码器功能可能因设备和配置而有所不同。与您的制造商联系,以了解为单个设备的启用硬件加速度和编解码器功能。性能混合体系结构结合了两个核心微体系结构,性能核(P核)和有效核(电子核),在第12 genIntel®Core™处理器上首次引入的单个处理器模具上。选择第12代和新的Intel®Core™处理器没有性能混合体系结构,只有p核或电子核,并且可能具有相同的高速缓存尺寸。有关SKU的详细信息,包括缓存尺寸和核心频率,请参见Ark.intel.com。英特尔不控制或审核第三方数据。您应该咨询其他来源以评估准确性。内置Intel®ARC™GPU仅在SelectIntel®Core™Ultra(系列2)处理器供电系统上可用。OEM启用需要。 与OEM或零售商检查系统配置。 某些图像可能已更改或模拟,仅用于说明目的。 某些图像可能已更改或模拟,仅用于说明目的。 虽然Wi-Fi 7与前几代人向后兼容,但新的Wi-Fi 7功能需要PC配置为Intel Wi-Fi 7 Solutions,PC OEM启用,操作系统支持,并与适当的Wi-Fi 7 Routers/APS/Gateways一起使用。 6 GHz Wi-Fi 7在所有地区都不可用。 在intel.com/performance-wireless上了解更多信息。 所有产品计划和路线图都可能会更改,恕不另行通知。 本文档中指的是未来计划或期望的语句是前瞻性的陈述。 这些陈述是基于当前的期望,并且涉及许多可能导致实际结果与此类陈述中表达或暗示的风险和不确定性。 有关可能导致实际结果差异的因素的更多信息,请参阅www.intc.com上的最新收入发布和SEC备案。 没有绝对安全的产品或组件。 Intel Technologies可能需要启用硬件,软件或服务激活。 ©Intel Corporation。OEM启用需要。与OEM或零售商检查系统配置。某些图像可能已更改或模拟,仅用于说明目的。某些图像可能已更改或模拟,仅用于说明目的。虽然Wi-Fi 7与前几代人向后兼容,但新的Wi-Fi 7功能需要PC配置为Intel Wi-Fi 7 Solutions,PC OEM启用,操作系统支持,并与适当的Wi-Fi 7 Routers/APS/Gateways一起使用。6 GHz Wi-Fi 7在所有地区都不可用。在intel.com/performance-wireless上了解更多信息。所有产品计划和路线图都可能会更改,恕不另行通知。本文档中指的是未来计划或期望的语句是前瞻性的陈述。这些陈述是基于当前的期望,并且涉及许多可能导致实际结果与此类陈述中表达或暗示的风险和不确定性。有关可能导致实际结果差异的因素的更多信息,请参阅www.intc.com上的最新收入发布和SEC备案。没有绝对安全的产品或组件。Intel Technologies可能需要启用硬件,软件或服务激活。©Intel Corporation。英特尔,英特尔徽标和其他英特尔商标是英特尔公司或其子公司的商标。其他名称和品牌可能被称为他人的财产。