备用容量机制 (RCM) 一直在 WEM 中发挥着核心作用。虽然其本意是充当“备用交易者”机制,确保系统采购了满足十年一遇高峰需求所需的边际可调度容量 MW,但它在市场设计中的笨拙实施导致其渗透到市场规则的许多方面,从设定零售商 IRCR 义务到管理发电机性能;甚至对于不依赖容量信用的发电机,例如基本负荷煤炭和天然气,根据市场设计,它们依赖于长期双边合同。因此,鉴于广泛的意义、依赖和自身利益,改革 RCM 一直充满挑战。事实证明这是有问题的。WEM(以及世界其他地区)的供需性质发生了如此根本的变化,以至于 RCM 的原始设计现在完全不足以发挥其功能。几年前,当 WEM 的“舒适”供需平衡为实施面向未来的市场设计提供了机会时,就应该实施一种全新的管理充足供应的方法。然而,多年来,监管机构和政策机构并没有对 RCM(以及整个市场)进行适当的“改革”,而是决定在边缘上进行修修补补,重点是通过 RCM 价格模型来激励高效的产能组合。为了做到这一点,我们进行了以下工作:
摘要:通过综合资源管理促进高 RES(可再生能源)的普及被认为是全球不同岛屿上一种有前途的战略。为此,我们利用葡萄牙波尔图桑托岛的实际数据建立了一个试验台。考虑到其地理条件和能源需求,本研究分析了不同资源(即电网与供水系统、密集的内陆交通电气化和储能应用)的综合管理,以实现完全依赖 RES 的电网。储能利用和有目的的需求模式操纵被视为减少 RES 可用性和消费不匹配的工具。电动汽车(EV)可以被视为集中式存储系统的可靠替代方案,既可以作为负载,也可以作为电力资源(发电机),为电力系统提供所需的灵活性,以吸收增加的 RES 并保持供需平衡。这意味着电动汽车可以为电力系统和运输部门的绿色化做出贡献。因此,通过逐步增加电动汽车总数(从 0 辆增加到 2500 辆)来评估电动汽车在岛上的普及程度的影响。此外,还提出了供水(海水淡化)和能源部门之间的合作。所得结果表明,优化的资源管理可以显著帮助整个能源系统(电网)仅依赖可再生能源(太阳能和风能)。限电相对减少(最大化可再生能源份额),而污染严重的传统发电厂在模拟期间保持关闭状态。
摘要:创建了一个新的经济发展因果模拟模型,该模型全面详细地反映了各种类型的合法和影子经济活动及其相互关系。该模型用于预测到 2022 年整个国家(合法和影子)的经济。影子和合法指标的动态不同。最大和最重要的区别在于出口和进口。官方统计数据显示,2019-22 年乌克兰对外贸易为负数。然而,根据模型确定的总出口大大超过进口,因此我们实际上预计会出现盈余。这对于国家银行来说非常重要:其政策应基于乌克兰对外贸易的官方(法定)负差额(向市场投放外汇储备或贬值格里夫纳),但实际差额应包含影子流动且为正,反之亦然(在市场上购买货币或重新估价本国货币)。我们的模型计算了所有类型的商品和服务的生产量应如何变化以确保供需平衡。这些数字可以作为制造商的参考。我们建议乌克兰有关当局积极实施为乌克兰经济发展制定的预测:通过衡量这些类型商品生产在一年内的实际变化率,向生产者提供增加或减少生产的建议。关键词:法定和影子经济活动模型、预测、积极实施预测。
摘要:随着分布式发电机 (DG) 的快速发展和可再生能源 (RES) 电力渗透水平的提高,在发电功率和需电功率存在不确定性和多变性 (即功率波动) 的情况下,任何电力系统的安全持续运行都是一个关键问题。引入可控发电机和电力存储设备对于缓解这一问题是必不可少的。为满足电力供需平衡要求,在功率平衡约束下进行潮流分配至关重要。然而,由于发电机和负载的物理功率限制约束、电力存储设备的容量限制和连接安排,很难实现功率平衡。本文提出了一种系统特性来描述发电机、负载、存储设备及其之间连接的关系。应满足所提出的特性系统以通过保持存储设备的 SOC 边界来保证给定潮流系统的安全运行。也就是说,要实现可行的电力流分配,需要考虑许多问题,例如必须如何确定发电机和负载的功率限制(即最大和最小功率水平)、存储设备的容量有多大以及必须考虑的连接的物理布置。本文还展示了一个优化问题,包括优化存储容量、使用可再生和不可再生能源发电机以及与电力需求相匹配。本文讨论了几种演示场景,以应用和验证我们提出的系统特性。
利率的作用取决于金融市场、储蓄和投资决策的分离程度以及资本进出该国的自由度。例如,在非货币化部门较多的国家,利率的作用不如在高度货币化的经济体中那么重要,在中央计划经济体中,利率的直接影响也小于在市场导向型经济体中。在市场导向型经济体中,大多数储蓄和投资决策都是分开做出的,利率的变化(如工资和汇率的变化)有助于恢复和维持商品和货币市场供需平衡,前提是制度环境允许这种变化。但即使在计划经济体或金融市场不太发达的国家,当局为了有效配置稀缺资源,仍然需要考虑不同投资的回报率以及用于融资的资金的社会成本。其他因素,如宗教取向,也会影响利率的作用。例如,在伊斯兰国家,对借入资金使用固定费用违背了坚定的宗教信仰,其中一些国家正在建立基于贷方和借方共享利润和损失的金融中介形式。在大多数发展中国家,最重要的利率是由行政决定的,通常是通过法律对贷款和存款利率施加限制。(在许多国家,官方控制只是通过国家对部分或全部主要银行的所有权来实施。)在这些国家控制利率的一个原因是
随着电网脱碳,间歇性可再生能源在电力供应结构中的比例越来越大。这导致供需平衡变得困难。储能提供了一种有希望的应对这一挑战的方法,通过在供过于求时充电,在供不应求时放电,可以平滑波动。这自然会引出一个问题:一个国家电力系统需要多少储能。由于经济限制,仅仅大幅度采购储能容量是不够的,但任何具有实际限制的水平都必然伴随着无法平衡系统的风险。英国 (GB) 电网 2019 年的停电就是一个例子,当时根本没有足够的备用容量来满足罕见事件的要求 [1]。在这项工作中,我们提供了一个将风险偏好映射到储能容量需求的框架。用户可以定义短缺事件的类别,然后指定他们愿意接受每种事件发生的频率。 [2] 中提出的机会约束规范形式用于确定所需的最小储能容量。为了便于描述,我们重点关注英国国家电网系统,但我们的方法仍然具有普遍性。我们没有使用静态电网供应组合,而是考虑了英国国家电网(英国输电系统运营商)预测的随时间变化情况,这种情景旨在满足英国在《巴黎协定》下的义务 [3]。
随着越来越多的可再生能源 (RES) 进入电网,由于 RES 固有的间歇性和不可预测性,高峰时段的供需平衡将成为一个越来越大的挑战。当风能和太阳能发电过剩时,电网级电池可以储存能量,并将其放电以满足传统上由联合循环燃气轮机 (CCGT) 电厂提供的可变峰值需求。本文从技术和环境角度评估了电池储存取代 CCGT 以应对英国当前和未来能源情景 (FES) 的可变峰值需求的潜力。技术分析结果表明,假设电池的尺寸针对国家电网提出的不同供需情景进行了优化,则电池能够分别在 2016 年、2020 年和 2035 年满足总可变峰值需求的 6.04%、13.5% 和 29.1%,而 CCGT 电厂则满足其余需求。具体而言,为了在 2035 年逐步淘汰英国电网中的 CCGT 可变发电,风能和太阳能的电力供应需要增加到国家电网 FES 预测供应量的 1.33 倍。通过简化的生命周期评估 (LCA) 研究和比较了用电池替代 CCGT 的环境影响。LCA 研究的结果表明,如果用电池代替 CCGT,可以减少高达 87% 的温室气体排放,即估计 1.98 MtCO 2 当量,最佳供应量为 29.1%,即 2035 年可变峰值需求。
摘要:能源行业正在经历从发电到消费端各个阶段的范式转变。由于可再生能源 (RES) 渗透率的提高、监测和控制技术的进步以及配电系统组件的主动性,实现了经济实惠、灵活、安全的供需平衡,从而推动了微电网 (MG) 能源系统的发展。RES 的间歇性和不确定性以及 MG 组件(例如不同类型的能源发电源、储能系统、电动汽车、加热和冷却系统)的可控性是部署高效能源管理系统 (EMS) 所必需的。多智能体系统 (MAS) 和模型预测控制 (MPC) 方法在最近的研究中得到了广泛应用,其特点可以解决大多数 EMS 挑战。这些方法的优势在于 MAS 的独立特性和性质、MPC 的预测性以及它们提供经济实惠、灵活和安全的 MG 操作的能力。因此,本篇最新综述首次对 MG 控制和优化方法及其目标进行了分类,并有助于从能源三难困境(灵活性、可负担性和安全性)的角度理解 MG 运营和 EMS 挑战。主要确定和讨论了使用 MAS 和 MPC 方法可实现的控制和优化架构。此外,还提出了 MG-EMS 未来研究建议,涉及与 MAS、MPC 方法、稳定性、弹性、可扩展性改进和算法开发相关的能源三难困境,以造福研究界。
表 1:2014/15 财年至 2019/20 财年之间的输电和配电线路长度 .............................................................. 14 表 2:截至 2020 年 6 月 30 日,在用变压器的总装机容量(MVA) ............................................................................. 17 表 3:购买的能源(GWh) ......................................................................................................................... 18 表 4:安装容量和有效容量 ......................................................................................................................... 20 表 5:2014/15 – 2019/20 年度的消费模式、消费者趋势和客户增长 .................................................................................. 24 表 6:国内消费假设 ......................................................................................................................... 32 表 7:小型商业假设 ......................................................................................................................... 34 表 8:大型商业和工业假设 ......................................................................................................................... 35 表 9:街道照明假设 ......................................................................................................................................... 36 表 10:目标损耗水平 ......................................................................................................................................... 36 11:旗舰项目及其假设 ...................................................................................................................... 37 表 12:BESS 能源消耗 .............................................................................................................................. 38 表 13:能源需求预测 .............................................................................................................................. 40 表 14:需求预测 ...................................................................................................................................... 41 表 15:水电潜力 ...................................................................................................................................... 51 表 16 预测假设 ...................................................................................................................................... 70 表 17:国际运输成本假设 ...................................................................................................................... 71 表 18:筛选候选人名单 ............................................................................................................................. 73 表 19 筛选项目的技术经济数据 ............................................................................................................. 74 表 20:已承诺项目 ................................................................................................................................ 78 表 21:候选项目 ................................................................................................................................ 79 表 22:供需平衡 ................................................................................................................................ 84 表 23 容量 因素 ......................................................................................................................... 85 表 24 优化案例参考场景扩展-代数扩展表 ...................................................... 86
新的偏远社区能源系统模型 (EnerSyM-RC) 旨在量化怀特岛能源系统中采用潮汐能、太阳能光伏、海上风电和能源储存的影响。基于可再生能源总发电量与预计年需求(相当于 136 MW 平均功率)相匹配的情景,安装 150 MW 太阳能光伏、150 MW 海上风电和 120 MW 潮汐能容量可增强供需平衡,同时还可降低最大电力盈余幅度,与表现最佳的太阳能+风能系统相比,两者均降低 25%。采用潮汐能还将总陆地/海洋空间减少 33%。采用潮汐能容量的经济可行性在很大程度上取决于储备能源的价格;当储备能源价格超过 2022 年远期交付合同平均价格(250 英镑/MWh)时,采用潮汐能容量可降低全系统能源的平准化成本(相对于太阳能+风能系统)。当潮汐能的溢价被储备能源的节省所抵消时,整个系统的能源平准化成本将达到 92 英镑/兆瓦时,这一临界点就会出现。一般来说,这些由潮汐能采用而产生的系统效益在一系列不同的需求状况下是一致的,并且在年度可再生能源总供应量相对于需求量过大的情况下也是如此。