在这项工作中,我们研究了基于特征的解释对人工智能辅助决策分配公平性的影响,特别关注从简短的文本简历中预测职业的任务。我们还研究了任何影响是如何通过人类的公平感知及其对人工智能建议的依赖来调节的。我们的研究结果表明,解释会影响公平感知,而公平感知又与人类遵守人工智能建议的倾向有关。然而,我们发现这样的解释并不能让人类辨别正确和不正确的人工智能建议。相反,我们表明,无论人工智能建议的正确性如何,它们都可能影响依赖性。根据解释强调的特征,这可能会促进或阻碍分配公平:当解释强调与任务无关且显然与敏感属性相关的特征时,这会提示覆盖与性别刻板印象相符的 AI 建议。同时,如果解释看起来与任务相关,这会引发依赖行为,从而强化刻板印象一致的错误。这些结果表明基于特征的解释不是提高分配公平性的可靠机制。
人机协作的安全性和效率通常取决于人类如何适当地校准对人工智能代理的信任。过度信任自主系统有时会导致严重的安全问题。尽管许多研究都关注系统透明度在保持适当信任校准方面的重要性,但在检测和缓解不当信任校准方面的研究仍然非常有限。为了填补这些研究空白,我们提出了一种自适应信任校准方法,该方法包括一个通过监控用户的依赖行为来检测不适当校准状态的框架和称为“信任校准线索”的认知线索,以提示用户重新启动信任校准。我们使用无人机模拟器在在线实验中评估了我们的框架和四种类型的信任校准线索。共有 116 名参与者使用无人机的自动检查功能执行了坑洼检查任务,其可靠性可能因天气条件而波动。参与者需要决定是依靠自动检查还是手动进行检查。结果表明,自适应地呈现简单提示可以显著促进过度信任期间的信任校准。
本观点的目的是提出并讨论将背外侧前额叶皮层的经颅磁刺激 (TMS) 与虚拟现实 (VR) 食物暴露相结合,用于治疗食物成瘾。“食物成瘾”是一种功能失调的饮食模式,通常见于神经性贪食症和暴食症等饮食失调症 (ED)。由于需要食用某种物质(食物)和存在依赖行为,食物成瘾与物质使用障碍相提并论。近年来,VR 已被应用于 ED 的治疗,因为它通过食物暴露代替真实刺激来触发心理和生理反应。虚拟现实提示暴露疗法已被证明是一种有效的技术,可调节 ED 中的焦虑和食物渴望。此外,TMS 已被证明可以调节与神经精神疾病有关的电路和网络,并可有效治疗尼古丁渴求和消费以及可卡因使用障碍等成瘾。模拟技术和神经刺激的结合可能会比单一干预带来更好的改善,因为它意味着认知和神经心理学技术的存在。本文将讨论这种方法的可能优势。
人工智能 (AI) 技术与人类工作流程的日益融合,带来了人工智能辅助决策的新范式,即人工智能模型提供决策建议,而人类做出最终决策。为了最好地支持人类决策,定量了解人类如何与人工智能互动和依赖人工智能至关重要。先前的研究通常将人类对人工智能的依赖建模为一个分析过程,即依赖决策是基于成本效益分析做出的。然而,心理学的理论模型表明,依赖决策往往是由情感驱动的,比如人类对人工智能模型的信任。在本文中,我们提出了一个隐马尔可夫模型来捕捉人工智能辅助决策中人机交互背后的情感过程,通过描述决策者如何随着时间的推移调整对人工智能的信任并基于他们的信任做出依赖决策。对从人类实验中收集的真实人类行为数据的评估表明,所提出的模型在准确预测人类在人工智能辅助决策中的依赖行为方面优于各种基线。基于所提出的模型,我们进一步深入了解了人类在人工智能辅助决策中的信任和依赖动态如何受到决策利害关系和交互经验等情境因素的影响。