ISSN 1330-3651 (印刷版), ISSN 1848-6339 (在线版) https://doi.org/10.17559/TV-20201129072212 原创科学论文 巷道非直壁段锚喷支护力学模型及参数优化 程云海,李峰辉*,李刚伟 摘要:巷道锚喷支护一般采用梁模型计算,但巷道弯曲侧锚喷支护力学状态与直侧有明显不同。为了合理确定巷道弯曲侧锚喷支护参数,对喷层受力进行分析。将锚喷支护结构简化为固结梁与圆柱耦合的力学模型。为探明圆形巷道(或圆弧段)锚喷支护的力学机理,合理确定锚喷支护参数,对喷混凝土层进行应力分析。将锚喷支护结构简化为固结梁与圆柱体耦合的力学模型,结合摩尔-库仑强度理论,建立了喷混凝土层厚度、喷混凝土强度、锚杆间距、锚杆长度对围岩自承能力影响的力学模型,确定了锚喷支护参数与围岩自承能力的影响规律。研究结果表明:喷混凝土强度与围岩自承能力呈线性关系,喷混凝土厚度与围岩自承能力呈二次函数关系,锚杆间距、锚杆长度与围岩自承能力呈三次函数关系。研究成果对巷道曲线边坡锚喷支护参数的确定具有一定的指导意义。关键词:锚喷支护;筒体;力学模型1引言锚喷支护技术广泛应用于矿山、隧道、地铁等地下工程[1-6]。锚喷支护能最大程度地保持围岩的完整性和稳定性,充分发挥围岩的支护作用,对控制围岩的变形、位移、裂隙发展等起着重要作用[7-10]。国内外已有不少学者对锚喷支护技术进行了研究。李等[11-12]。[11]确定了喷层破坏时中性层的位置,探究了不同支护方式下锚喷支护参数与围岩自承能力的关系,建立了巷道围岩自承能力与锚杆间距、喷层厚度、喷层强度之间的力学模型。温等[12]建立了由系统锚杆支撑的外拱、喷层支撑内拱和钢框架组成的组合拱力学模型。王等[4]在对巷道围岩和喷层应力分析的基础上,建立了喷层厚度、喷层强度、锚杆间距对围岩自承能力影响的力学模型。方等[5]研究了喷层厚度、喷层强度、锚杆间距对围岩自承能力的影响。 [13] 设计了高预应力强锚喷支护方案,并利用振弦喷浆应力仪对方案实施后喷浆层的应力状态进行监测。吕建军等 [14] 提出了厚软岩巷道全断面锚固的二维半模型,建立了围岩及锚固系统的理论模型,得到了应力释放、锚杆与围岩耦合的分布规律。荆建军等 [15] 研究了预应力锚杆的力学性能
大多数日常任务都需要同时控制双手。在这里,我们使用从四肢瘫痪参与者的双侧运动和体感皮层记录的多单元活动来展示双手手势的同时分类。使用针对每只手分别训练的分层线性判别模型对尝试的手势进行分类。在一项在线实验中,手势被连续分类并用于控制两个机械臂进行中心向外运动任务。需要保持一只手静止的双手试验产生了最佳表现(70.6%),其次是对称运动试验(50%)和非对称运动试验(22.7%)。我们的结果表明,可以使用两个独立训练的手部模型同时解码双手的手势,但随着双手手势组合的复杂性增加,使用这种方法进行在线控制变得更加困难。这项研究展示了使用双侧皮层内脑机接口恢复双手同时控制的潜力。
1.0 简介 5 2.0 MEW / SPS - 适用于 RES 的储能系统和带储能的变电站 8 MEW-b (200 kW / 498 kWh) - 容量为 498 kWh、输出功率为 200 kW 的储能系统 10 MEW-b (300 kW / 664 kWh) - 容量为 664 kWh、输出功率为 300 kW 的储能系统 11 MEW-b (500 kW / 830 kWh) - 容量为 830 kWh、输出功率为 500 kW 的储能系统 12 MEW-b (0,5 MW / 2,49 MWh) - 容量为 2490 kWh、输出功率为 500 kW 的储能系统 13 MEW-b (1 MW / 1,66 MWh) - 带储能的储能系统容量为 1660 kWh,装机容量为 1000 kW 14 MEW-b 20/400-3 (100 kW / 166 kWh) - 配备储能器的变电站,容量为 166 kWh,输出功率为 100 kW 15 MEW-b 20/1000-4 (300 kW / 996 kWh) - 配备储能器的变电站,容量为 996 kWh,输出功率为 300 kW,并配有直流充电站 16 MEW-b 20/800-3 (0,3 MW / 1,33 MWh) - 配备储能器的变电站,容量为 1,33 MWh,输出功率为 0,3 MW 18 MEW-b 20/600-3 (0,6 MW / 1,33 MWh) - 配备储能器的变电站,容量为1,33 MWh 和 0,6 MW 的功率输出 20 MEW-b 20/1250-3 (1 MW / 2,66 MWh) - 容量为 2,66 MWh 和 1 MW 的功率输出的储能系统 22 MEW-b 20/2500-3 (2 MW / 5,31 MWh) - 容量为 5,31 MWh 和 2 MW 的功率输出的储能系统 24 3x MEW-b 20/2500-3 (2 MW / 5,31 MWh) - 容量为 15,93 MWh 和 6 MW 的功率输出的储能系统 26 MEW-s - 杆上储能 27 3.1 容量高达 1MWp 的集装箱变电站,配有计费计量系统,连接到中压电网 28 MRw-b 20/1000-3 - 带有内部检修走廊的变电站。交流侧逆变器电压 - 800 V,低压布置 - IT 28 MRw-b 20/1000-3 - 带有内部检修走廊的变电站。交流侧逆变器电压 - 400 V,低压布置 - TN-C 2 9 3.2 容量超过 1 MWp、配有计费计量系统、连接至中压电网的集装箱变电站 30 MRw-b 20/2000-4 - 带有内部检修走廊的变电站。交流侧逆变器电压 - 800 V,低压布置 - IT 30 MRw-b 20/2x1000-4 - 带有内部检修走廊的变电站。交流侧的逆变器电压 - 400 V,低压布置 - TN-C 31 MRw-b 20/3150-3 - 带有内部检修走廊的变电站。交流侧的逆变器电压 - 800 V,低压布置 - IT 32 MRw-b 20/3150-4 - 带有内部检修走廊的变电站。交流侧的逆变器电压 - 800 V,低压布置 - IT 33 MRw-b 20/2x2500-5 - 带有内部检修走廊的变电站。交流侧的逆变器电压 - 800 V,低压布置 - TN-C 34 MRw-b 20/2x4000-3 - 带有内部检修走廊的变电站。交流侧的逆变器电压-800 V,低压布置 - TN-C。35 MRw-bS 20/4x2500-6 - 带有内部通道的变电站。交流侧逆变器电压 - 800 V,低压布置 - IT 37 MRw-bS 20/4x2500-6 - 带有内部通道的变电站。交流侧逆变器电压 - 800 V,低压布置 - IT 38 3.3 容量超过 1 MWp 的集装箱(扇区)变电站,通过耦合变电站连接到中压电网,或通过集电变电站连接到高压电网 39 MRw-bS 20-8 – 集电变电站 40 RELF 24 – 专用于集电变电站的中压开关柜 41 Mzb2 20/1000-3 – 带有外部通道的扇区变电站。交流侧逆变器电压 - 400 V,低压布置 - TN-C 42 Mzb2 20/1600-3 – 带外部接入的扇区变电站。交流侧逆变器电压 - 800 V,低压布置 - IT 43 Mzb2 20/2500-4 – 带外部接入的扇区变电站。交流侧逆变器电压 - 800 V,低压布置 - TN-C 44 Mzb2 20/4000 (lub 3150)-3 – 带外部接入的扇区变电站。交流侧逆变器电压 - 800 V,低压布置 - IT 45 Mzb2 20/3500 - 扇区变电站;MRw-b 20-7 – 耦合变电站。交流侧逆变电压 - 800 V,低压布置 - TN-C,中压 - 高达 20 kV 46 MRw 20/1000-1 – 带外部接入的金属铠装扇形变电站。交流侧逆变电压 - 800 V,低压布置 - TN-C 47 MRw 20/1600-3 – 带外部接入的金属铠装扇形变电站。交流侧逆变电压 - 800 V,低压布置 - TN-C 48 MRw-b 20/2x2500-4 – 带内部接入走廊的扇形变电站。交流侧逆变电压 - 800 V,低压布置 - TN-C 49 MRw-b 20/6500-2 – 带内部接入走廊的扇形变电站。交流侧逆变器电压 - 800 V,低压布置 - IT 50 3.4 选定设备和光伏基础设施解决方案 51 ZK-SN - 中压电缆箱 51 ZK-SN (2,4x1,16) / 4-tpw / ZK-SN (3x1,3) / 5-tpw / ZK-SN (3,2x1,3) / 6-tpw 51 低压和中压开关柜作为 RES 专用变电站的主要设备 52 4.0 光伏电站专用的杆式变电站和架空隔离点 53 带 RUN III 24/4 WSH 隔离开关的 STNKo-20/400– 专用于容量高达 0.4 MWp 的太阳能电站的杆式变电站 53 带 RN III 24/4 WSH 隔离开关的 STNKo-20/400/PP3–专用于容量高达 0.4 MWp 的太阳能发电场的杆上变电站 54 STNKo-20/400 PP3 2xPBNW,配备 RUN III 24/4 WSH 断路器和间接计量系统 – 容量高达 0.4 MWp 的杆上变电站 – 配备自动控制系统和中央保护的低压开关柜 55 STNr-20/400/PP3,配备 THO 24 断路器和接地开关 – 专用于容量高达 0,4 MWp 56 带 THO-RC27 重合器的 STSKpbr-W 20/630/PP3 – 专用于太阳能发电场的杆上变电站,容量高达 0.63 MWp 57 带 THO-W 断路器和 RPN 隔离开关的 STSpbro-W 20/630/PP3 – 容量高达 0.63 MWp 的杆上变电站 – 带计量系统、功率分析仪和绿色能源计量的开关设备 58 架空电缆隔离开关和重合器 59 带 THO 24 隔离开关的 LSN-E-PŁ-K-1g-1rs-THO 杆柱 59 带 RPN-W 400A 隔离开关和短路指示器的 LSN-E-PŁ-K-1g-1rs-RPN 60 带开关的 LSN-E-Tr-PS-2g-2r-RPNu断路器 RPNu 400A 仅手动控制,无自动化 61 杆柱 LSN-E-PŁ-O-1ws-THO-RC27 – ON,带 THO-RC27 重合器和断路器 62 5.0 来自生物燃料的可再生能源 - 专用于沼气厂的集装箱变电站 63 MRw-b 20/1600-3(或 MRw 20/1600-3) 63 MRw-b 20/1250-4(或 MRw 20/1250-4) 64 MRw 20/2x400-12 + 4x MRw 20/2000 65 6.0 来自风能的可再生能源 - 专用于风力发电场的集装箱变电站 67 MRw-b 20-3(或 MRw 20-3) 67 MRw-b 20/2500-4 (或 MRw 20/2500-4) 68 MRw-b 20/1600-4 (或 MRw 20/1600-4) 69 中压电网无功功率补偿站 70 MRw-b 20-1 中压无功功率补偿站 (5 MVAr) 70 MRw-b 30-1 中压无功功率补偿站 (3,5 MVAr) 71
iCAP MTX ICP-MS 可确保最高水平的分析效率,同时易于使用,可显著减少员工培训时间。该仪器只需极少的维护即可实现高效运行。Thermo Scientific™ Qtegra™ 智能科学数据解决方案 (ISDS) 软件可无缝控制您的工作流程,从最初的仪器设置到日常操作再到报告结果。通过强大而可靠的自动化流程满足准确分析和可追溯数据的需求。
与电动汽车相关的行业中的中文OFDI可能在2023年创造了新的记录。在282亿美元的价格上,它尚未与2022年的297亿美元相匹配,但2023年的数字是保守的估计,其中不包括几个没有已知价格标签的大型项目,例如Byd的匈牙利工厂。中国电动汽车从北美转向欧洲,中东和亚洲。四分之三的中国投资进入了欧洲,中东和北非(MENA)和亚洲,欧盟和美国的自由贸易伙伴摩洛哥经历了最大的收益。ofdi跌至总数的10%。更多的局部电池制造正在推动投资。中国电池投资(由格林菲尔德项目驱动)越来越多样化,包括阳极和阴极等投入。中国电池制造商在海外扩张中带来了更多的供应链,这可能是为了响应不断增长的市场需求和重新发送压力。在2024年,我们预计中国电动汽车投资国外将保持强劲,但将从电池投资转变为欧洲,拉丁美洲和亚洲的电动汽车制造业。主要的驱动因素将包括中国放缓的房屋市场以及东道国经济对更高增值和创造就业投资的需求,以换取市场通道。由于监管不确定性,在北美的投资将保持波动,但墨西哥可以看到中国项目的涌入。中国电动汽车和电池公司越来越多地停留在岩石和艰难的地方。中国投资者越来越面对接待经济体的政治反弹,最著名的是美国试图限制中国对电动汽车供应链的影响。同时,北京对其EV
致谢:作者承认莱斯特大学临床前研究机构生物医学服务部的帮助和支持,以提供技术支持和对实验动物的照顾。作者要感谢Vaibhav Konanur开发了用于纠正荧光痕迹的分析方法,Leon Lagnado用于初始光度法实验中使用的友善借贷设备,以及Andrew Macaskill和Andrew Macaskill进行有关分析的有用讨论。这项工作由生物技术和生物科学研究委员会资助[授予J.E.M.的BB/M007391/1。],欧洲委员会[授予J.E.M.的GART#631404],Leverhulme Trust [授予#RPG-2017-417 to J.E.M.和J.A-S。]和TromsøResearchFoundation [授予J. E. M.的19-SG-JMCC)。
“马法特微电网”是一个由欧洲区域发展基金资助的研究项目,由留尼汪岛大学的 PIMENT 实验室和 SIDELEC Reunion 合作开展。该项目的主要目的是开发和改进留尼汪岛的智能电网概念。马法特是一个内陆地区,没有连接到主电网。当地政府的主要目标是通过太阳能微电网设施为大约 300 户家庭通电。我们的案例研究为马法特的 3 户家庭提供了一个实际的能源管理系统应用,旨在最大限度地利用光伏能源并延长电池寿命。该项目与马法特的三户家庭密切合作,每户家庭都安装了人机界面。这项工作是一种初步方法,根据用户的接受程度从理论上评估需求侧管理流程的有效性。结果表明,只要用户遵循给出的建议,能源管理系统就可以减少能源浪费并提高太阳能的有效利用率。
在分布式能源部署状况方面,哥伦比亚实施了一项计划,旨在提高人们对能源效率的认识,并要求对电器进行贴标。合理高效利用能源和非传统能源计划 (PROURE) 确实实现了其目标,但并未充分发挥哥伦比亚能源效率机会的潜力。到 2022 年底,太阳能光伏分布式装机容量预计为 103 兆瓦,预计到 2036 年将达到 1,132 兆瓦——年均增长率为 23%,这显然是朝着正确方向迈出的一步 (UPME,2022a)。然而,如果要实现哥伦比亚能源部门雄心勃勃的碳减排目标,还需要做更多的工作来加速该国的能源效率和分布式能源/灵活技术。
能源效率指标是跟踪各种目的能源效率进度的关键(例如,政策制定,监视目标,制定能源预测,制定场景和计划以及基准测试)。本指南适用于专业人士和决策者,描述了能源最终用途数据的选择和良好实践,以及在国家一级的能源效率指标的开发。同时,它也可以用作评估工具,帮助各国/经济来定位其起点,并根据各自的国家利益和优先事项确定适当的目标。此处介绍的路线图涵盖了各个国家的咨询活动的结果,并提出了良好的实践和实践提示。它承认没有单一的解决方案,而是许多可能的途径,具体取决于国家环境和优先事项。路线图是一份战略文档,研究效率指标开发的整个价值链,从最初的数据和指标的需求出现到后来的传播和数据使用阶段,因此对于全球从业人员的开发中来说,这是一种有用的资源。
Berthet(“孤独”的神圣老狼,我们一定不会远离80公里的手臂覆盖在一起),Ludovic Bultingaire,Thomas Dépret,Guillaume Fantino,Kristell Michel,Bertrand Morandi,Volodia Petropavlovsky,Dominique Reynaud,Samuel Segura 和 Vincent Wawrzyniak(这很好,因为你拿了三把铲子,照片证明你有你的名字出现的权利!)还有我的另一半Anaïs(你不常来,但你毫不犹豫地奉献自己来帮助我完成某些调查,而且不是在最受欢迎的网站上)。谢谢你周末起床去我的“阴暗,不是很臭”的网站,在隆冬)。获取数据是一回事,分析数据又是另一回事。非常感谢 Lise Vaudor 的统计帮助和教学(好吧,我承认,R 很棒!)。