我们介绍了一种测量人类注意力的方法,用于在执行视觉任务时测量对双稳态图像的不同解释。向九名健康志愿者展示了具有闪烁面的 Necker 立方体。立方体前后面的像素强度分别由频率为 6.67-Hz (60/9) 和 8.57-Hz (60/7) 的正弦信号调制。这些频率及其二次谐波的标签在从枕叶皮层记录的脑磁图 (MEG) 数据的平均傅里叶光谱中清晰可辨。在实验的第一部分,要求受试者通过将立方体方向解释为左向或右向来自愿控制注意力。因此,我们观察到相应光谱成分的主导地位,并测量了自愿注意力的表现。在实验的第二部分,要求受试者只是观察立方体图像,而无需对其进行任何解释。在第二谐波标记频率处,主要光谱能量的交替被视为立方体方向的变化。基于第一阶段实验的结果,并使用小波分析,我们开发了一种新方法,使我们能够识别当前感知到的立方体方向。最后,我们使用主导时间分布来描述非自愿注意力,并将其与自愿注意力表现和大脑噪音联系起来。特别是,我们已经表明,注意力表现越高,大脑噪音就越强。
成像脑学习和记忆电路激酶信号传导是一个巨大的挑战。基于相的激酶(SPARK)生物传感器的基于相的活性报告剂允许对体内多种相互作用激酶的回路定位研究,包括蛋白激酶A(PKA)(PKA)和细胞外信号调节激酶(ERK)信号。在精确映射的果蝇脑学习/记忆力中,我们发现PKA和ERK信号差异富集在不同的Kenyon细胞连接节点中。我们发现,增强正常电路活性会诱导电路定位的PKA和ERK信号传导,从而在新的突触前和突触后结构域内扩大激酶功能。活性诱导的PKA信号传导与先前选择性ERK信号节点的广泛重叠,而活性诱导的ERK信号在新的连接节点中产生。我们发现,肯尼因细胞中的靶向突触传输阻滞提升了基线ERK信号通常高的肯尼恩细胞中的电路 - 定位ERK诱导,这表明侧向和反馈抑制。我们发现通路链接的孟-PO(人类SBK1)丝氨酸/苏氨酸激酶的过表达,以改善学习获取和记忆巩固导致可分离的Kenyon细胞电路连接节点中的PKA和ERK信号急剧增强,从而揭示了同步和未提到的信号启动的潜在。最后,我们发现一种机械诱导的表现性癫痫发作模型(易于震惊的“爆炸敏感”突变体)具有强烈升高的电路定位的PKA和ERK信号传导。两性在所有实验中均使用,除了半合基因唯一的癫痫发作模型。过度兴奋,学习增强和表皮性癫痫模型具有相当升高的相互作用激酶信号传导,这表明使用依赖性诱导的共同基础。我们得出的结论是,PKA和ERK信号调制在与学习/记忆潜力有关的癫痫发作易感性基础的使用依赖性空间电路动力学中进行了局部协调。