随着空间数据流量的不断增加,空间光通信受到越来越多的关注,作为持续开发高速光学空间网络努力的一部分,尼康和JAXA一直在开发用于调制连续波信号的单横模10 W保偏Er/Yb共掺光纤(EYDF)放大器。我们已经完成了工程模型(EM)的开发,并计划在2024年作为国际空间站光通信系统的一部分演示该放大器。EM放大器具有三级反向泵浦结构,带有抗辐射的EYDF。它还包括泵浦激光二极管和功率监控光电二极管以避免寄生激光,这两者都已被证实具有足够的抗辐射能力,以及控制驱动电路。整体尺寸为300毫米×380毫米×76毫米,重6.3公斤。在标准温度和压力条件(STP:室温,1 个大气压)下,当信号输入为 -3 dBm 时,EM 放大器在总泵浦功率为 34 W 时实现了 10 W 的光输出功率。总电插效率达到 10.1%。在 STP 下,放大器在 10 W 下实现了 2000 小时的运行时间。我们进行了机械振动测试和工作热真空测试,以确保放大器作为太空组件的可靠性。在工作温度范围的上限和下限 ± 0 和 + 50 °C 下,输出功率和偏振消光比 (PER) 分别为 > 10 W 和 > 16 dB,而放大增益或 PER 没有任何下降。
手术切除。3然而,在更晚期疾病的患者中,辅助治疗被证明可以提高生存率。1 - 3在更晚期的肿瘤 - 节点 - 纳特氏症(TNM)阶段(例如TNM阶段III),复发,更具体地说,局部复发(LR)在确定不利的患者预后中起着重要作用。4标准治疗后有LR风险的III期CRC患者的能力为创建更多个性化的护理并有助于避免过度治疗患者的机会。为实现这一目标,预后生物标志物的策展主要集中在分子和遗传指标上。5 - 9近年来,已经出现了各种商业测试套件,以预测II和III期CRC患者(例如Oncotypedx,Coloprint,Coloprint,Cologuideex和Cologuidepro)的远处复发风险。但是,它们的次优准性和/或高昂的成本继续推动寻找替代预后标记的搜索。8,9例如,有越来越多的证据表明,在肿瘤胶原蛋白(肿瘤微环境的关键成分)(TME)的生长模式中存在有价值的预后信息。10 - 13称为脱糖反应(DR),已显示结缔组织的这种生长和结构重塑与5年无复发生存率和LR相关。14 - 17 Dr使用了基质成熟度的三类分类(未成熟,中间和成熟)。然而,鉴于其评估的定性和主观性质,博士并未目睹主要是由于观察者间的可变性而广泛的临床采用。光学技术允许通过各种模式来量化DR和胶原蛋白评估,以供肿瘤,心脏病学和牙科等领域的应用。18当前的黄金标准,第二谐波一代是特定于胶原蛋白的,但其高成本,冗长的成像时间,适度的视野和整体复杂性限制了其用于研究应用程序的使用。19,20个类似考虑的限制技术,例如扫描电子微拷贝和光学相干断层扫描(不包括眼科)。18 - 21更实用的染色技术,例如梅森的三色和picrosirius红色,优先结合胶原蛋白可以轻松地使用当前的病理显微镜来实现。22然而,对加法染色,费用,(in)与当前组织学工作流程,可重现性,定量和评分系统的信息内容的兼容性的担忧阻止了这些染色方法是对组织学部门的常规补充。22,23另外,极化光微拷贝(PLM)提供了一种更简单的方法,具有获得适合从未染色组织样品定量的高对比度图像的能力。24 PLM解决了许多上述问题,因此已应用于乳房,宫颈,前列腺,大脑和结肠罐中。25更具体地说,一种称为Mueller矩阵(MM)极化法的PLM技术已越来越多地与机器学习(ML)算法结合在一起,以将不足的生物学现象与其偏振特性直接相关,以鉴定与预后相关的参数。26 - 31
早期的量子算法主要基于两种算法,Grover 搜索算法 [1] 和量子傅里叶变换 (QFT) [2, 3]。量子相位估计算法 (PEA) [2] 是 QFT 最重要的应用之一,也是许多其他量子算法的关键,例如量子计数算法 [4] 和 Shor 整数分解算法 [3]。基于 PEA 的寻序子过程被认为是 Shor 算法指数级加速的源泉。虽然 PEA 是在 20 多年前提出的,但它仍然是近年来的研究热点 [5, 6, 7]。相位估计还引发了一个更广泛的主题,即幅度估计 [8, 9, 10, 11, 12, 13],包括最大似然幅度估计 [10]、迭代幅度估计 [12] 和变分幅度估计 [13]。此外,迭代相位估计算法 (IPEA) [14, 15, 16] 是 PEA 的一种更适合 NISQ (噪声-中间尺度量子) 的变体。在一定的 ϕ 选择策略下,IPEA 与 PEA [14] 完全相同,因此本文不再赘述。相位估计和振幅估计在量子化学 [17, 18, 19] 和机器学习 [20, 21] 等众多领域都有广泛的应用。给定一个执行幺正变换 U 的量子电路,以及一个本征态 | ψ ⟩
在量子磁学实验室 (LQM),我们进行磁学和相关电子材料的基础研究。我们的核心活动包括新材料的合成、内部实验技术、低温、高压和高磁场、中子和 X 射线散射以及理论和建模。LQM 隶属于洛桑联邦理工学院 (EPFL),该学院是世界著名的研究和教育中心,提供理想的学术环境以及与工业的良好联系。
伪自旋对称性 (PSS) 是一种与狄拉克旋量的下部分量相关的相对论动力学对称性。本文以单核子共振态为例,研究了 PSS 的守恒与破缺,采用格林函数方法,该方法提供了一种新颖的方法来精确描述窄共振和宽共振的共振能量和宽度以及空间密度分布。PSS 的守恒与破缺在共振参数和密度分布随势深的演变中完美地展现出来:在 PSS 极限下,即当吸引标量和排斥矢量势具有相同的大小但相反的符号时,PSS 完全守恒,PS 伙伴之间的能量和宽度严格相同,下部分量的密度分布也相同。随着势深的增加,PSS 逐渐破缺,出现能量和宽度分裂以及密度分布的相移。
在本文中,我们研究了湍流环境下的对称性破缺。我们用两个例子展示了从对称状态到对称性破缺状态的转变:(1)随着流体层厚度的变化,二维流动向三维流动的转变;(2)随着磁雷诺数的变化,薄层流动中的发电机不稳定性。我们表明,这些例子具有相似的临界指数,但与平均场预测不同。临界行为可以与波动的乘法性质相关联,并且可以使用随机界面的统计特性结果在一定限度内进行预测。我们的结果表明,可能存在一类受乘法噪声控制的新型非平衡相变。
伪自旋对称性 (PSS) 是一种与狄拉克旋量的下部分量相关的相对论动力学对称性。本文以单核子共振态为例,研究了 PSS 的守恒与破缺,采用格林函数方法,该方法提供了一种新颖的方法来精确描述窄共振和宽共振的共振能量和宽度以及空间密度分布。PSS 的恢复与破缺完美地体现在共振参数和密度分布随势深的演变中:在 PSS 极限下,即当吸引标量和排斥矢量势具有相同的大小但相反的符号时,PSS 完全守恒,PS 伙伴之间的能量和宽度严格相同,下部分量的密度分布也相同。随着势深的增加,PSS 逐渐破缺,出现能量和宽度分裂以及密度分布的相移。
图 3:a) 覆盖不同 L 型配体的结构(原子颜色:Cl=绿色、Se=灰色、Cd=金色、碳=棕色、氢=白色、硫=橙色、氧=红色、磷=深蓝色、氮=浅蓝色)以及所使用的命名法和各自的光学带隙。C 1 (Cl) 是图 1 的重复,用于比较。b) 最低八个状态的激子精细结构(最低激子状态设置为零能量)。颜色对应于对数刻度上状态的振荡器强度。
• 动机和关键问题 – 复合材料能量吸收器通过失效耗散能量,提高了现代商用飞机的耐撞性能。这些目标能量吸收器的承载能力可能会因缺陷而受到损害。在可幸存的碰撞事件中,这些能量吸收器将经历较高的应变率和负载率。因此,有必要研究这些碰撞吸收器在动态负载率下存在缺陷时的性能。 – 对于飞机座椅,制造缺陷和使用中损坏仅在静态试验中得到证实,但不包括在动态试验中。在定义 SAE ARP 6337 [1] 时,有人担心这些缺陷/损坏可能会改善或增强座椅在动态试验中的行为。因此,为了平衡动态试验中缺乏 1 类损坏的问题,静态试验中定义了 1 类和 2 类损坏的一些延伸。其原理是,如果静态试验有足够的余量,座椅系统的稳健性可以在静态和动态试验中得到证明。然而,需要评估缺陷对不同座椅部件性能的影响。目前的调查将有助于制定支持ARP 6337的指导材料。