第 2 章介绍了天线。本章解释了各向同性和定向辐射元件的原理,并介绍了许多重要概念,包括辐射电阻、天线阻抗、辐射功率、增益和效率。介绍了几种实用的天线形式,包括偶极子、八木波束天线、四分之一波(马可尼)天线、角反射器、波姆和抛物面天线。第 2 章还介绍了馈线(包括同轴电缆和明线类型)、连接器和驻波比 (SWR)。本章最后简要介绍了波导系统。第 3 章的主题是无线电发射机和接收机。本章向读者介绍了 AM 和 FM 发射机以及调谐射频 (TRF) 和超音速外差 (superhet) 接收机的工作原理。选择性、镜像信道抑制和自动增益控制 (AGC) 是现代无线电接收机的重要要求,在继续描述更复杂的接收设备之前,将介绍这些主题。现代飞机无线电设备越来越多地基于数字频率合成的使用,并且描述和解释了锁相环和数字合成器的基本原理。
第 2 章介绍了天线。本章解释了各向同性和定向辐射元件的原理,并介绍了许多重要概念,包括辐射电阻、天线阻抗、辐射功率、增益和效率。介绍了几种实用的天线形式,包括偶极子、八木波束天线、四分之一波(马可尼)天线、角反射器、波姆和抛物面天线。第 2 章还介绍了馈线(包括同轴电缆和明线类型)、连接器和驻波比 (SWR)。本章最后简要介绍了波导系统。无线电发射机和接收机是第 3 章的主题。本章向读者介绍了 AM 和 FM 发射机以及调谐射频 (TRF) 和超音速外差 (superhet) 接收机的工作原理。选择性、镜像信道抑制和自动增益控制 (AGC) 是现代无线电接收机的重要要求,在继续描述更复杂的接收设备之前,将介绍这些主题。现代飞机无线电设备越来越多地基于数字频率合成的使用,并描述和解释了锁相环和数字合成器的基本原理。
然而,氮化物点的发射线通常不均匀地加宽,与其寿命极限相比至少加宽 100 倍,10,11 这最终限制了它们的不可区分性。加宽是由光谱扩散引起的,光谱扩散是由点附近的电荷载流子的捕获和释放产生的,从而产生了变化的局部电场。通过量子限制斯塔克效应 (QCSE),这导致点的发射能量发生变化。这种效应对氮化物 QDs 比对砷化物 QDs 更强,因为首先氮化物材料的强极性导致氮化物 QDs 中的激子具有较大的永久偶极子,从而增加了与静电环境的耦合并放大了光谱扩散的强度。 12 其次,与砷化物点相比,氮化物点的生长方法改进时间较短,而且它们还表现出更高的点缺陷和位错密度,这些缺陷和位错密度可以充当载流子的陷阱。13–15 光谱扩散是氮化物点产生高度不可区分的光子的最大障碍,因为
EEG 的生物物理基础 人脑含有大约 1000 亿个神经元。神经元表现出膜电位的特征性变化,并根据通过离子通道的跨膜离子电流的活动激发动作电位。这些离子电位可以通过细胞内记录来记录,其中记录电极刺穿细胞膜并测量细胞内和细胞外电位之间的差异。这些离子电流还会导致产生具有偶极矩的细胞外偶极子,从而在附近产生电场和磁场。单个神经元产生的电场太弱,无法从头皮表面记录下来。电场通过细胞外液中的体积传导过程传输。体积传导过程具有频谱低通性质(图 1)——与低频膜电位振荡相比,高频活动衰减更多。因此,在头皮水平记录的脑电图代表了膜电位的低频振荡——底层神经元发生器的兴奋性突触后电位 (EPSP) 和抑制性突触后电位 (IPSP)。体积传导允许电
摘要天线技术通过利用信号处理算法,在蜂窝网络中提高光谱效率,安全性,能源效率和整体服务质量,这些算法在为干涉剂生成零的同时为用户提供辐射光束。在本文中,比较了用于形成用于形成智能天线束的光束的ML SO诸如支撑矢量机(SVM)算法,人工神经网络(ANN),集合算法(EA)和决策树(DT)算法等ML SO的性能。考虑了由10个半波偶极子组成的智能天线阵列。ANN方法比剩余的方法在实现光束和空方向方面的效果相比,而EA在降低侧叶级别(SLL)方面提供了更好的性能。使用EA用于所有用户方向可实现最大SLL。在形成智能天线的光束方面,ANN算法的表现与可变的速度尺寸自适应算法相比。
摘要:这项研究涉及四种地球物理方法的应用和分析(电阻率断层扫描,微重力,磁性,M.A.S.W.)用于在受控场地条件下检测隧道。Resistivity断层扫描为目标和近表面地质形成提供了令人满意的信息。偶极偶极子和杆偶极是检测到的空隙的最合适的阵列,尤其是当后来的前向前和逆转测量值时。耗时且费力的微重力方法适用于隧道的描述。先验信息对于微重力数据的反转是必需的。从表面波的多通道分析中得出的伪部分显示了两个地质层,并成像了浅平滑的异质性,归因于地下目标。但是,由于较低的横向分辨率,目标限制并未很好地定义。由于目标和宿主岩之间的磁化敏感性增加,梯度磁方法可以准确地描述隧道。当目标是当代人制造的结构时,通常会满足这种情况。
摘要:我们证明,热平衡中分子的集体振动强耦合可以在热力学极限下引起明显的局部电子极化。我们首先表明稀释型分子在稀 - 加仑限制中强烈耦合分子的整体的全部非遗传性Pauli- Fierz问题降低了出生的 - Oppenheimer近似 - 对电子结构的空腔 - Hartree方程。因此,每个分子都与所有其他分子的偶极子偶联体验,这在热力学极限(大集合)中等于不可忽略的值。因此,集体振动强耦合可以强烈改变单个分子在整体内的局部“热点”。此外,发现的腔诱导的极化模式具有零净极化,类似于自旋玻璃(或更好的极化玻璃)的连续形式。我们的发现表明,对极化化学的彻底理解需要对穿着的电子结构进行自洽处理,这可能会引起众多,迄今为止被忽视的物理机制。
摘要:为了回应对射频识别纺织品的日益增长的兴趣,作者通过引入RFIDTEX概念提出了一种新的方法来设计射频标识(RFID)设备。电感回路的耦合系统与RFID界面在Textronic结构中实现,以将应答器拆分为两个独立制造的组件。然后,两个模块都可以轻松地集成到RFIDTEX标签中。提出的模拟和测量结果证明了以蜿蜒的偶极子的形式制造相对较小的天线的概念,然后再用一个螺纹缝制,然后可以通过无镀锌连接的耦合系统将其连接到RFID芯片。所达到的参数清楚地表明,标签可以与读/写设备以及其两个部分之间的耦合正确通信,并且在这种情况下可以使用阻抗匹配。在纺织厂站点上使用电子识别标签和对环境条件影响的抵抗力提高的抵抗力的可能性是RFID设备设计的拟议方法的主要优势。作者提出的RFIDTEX应答器想法受到专利NO PL 231291 B1的限制。
电控制的光子电路对具有很大的能源效率和量子信息处理能力的信息技术有望。然而,典型光子材料的弱非线性和电响应是两个关键挑战。因此,已经对杂交电子光电系统(例如半导体激子 - 孔子体)进行了深入研究,因为它们的潜力允许更高的非线性和电气控制,到目前为止的成功率有限。在这里,我们展示了偶极性二利机的电场波导体系结构,该体系允许增强且可控制的极性非线性,从而实现了电反射的反射开关(镜像)和偶极极光利的晶体管。Polariton晶体管通过压缩稀释的偶性二极化脉冲,表现出非常强大的偶极相互作用,从而显示出封锁和抗块。使用一个简单的密度依赖性极化场来解释大型非线性,该电场非常有效地筛选外部电场,与固定偶极子相比,非线性的数量级增强。我们预测,在这种设备中,单个极性级别的量子封锁是可行的。
介绍了一种基于光泵磁力仪 (OPM) 的非侵入式功能性脑成像系统。基于 OPM 的脑磁图 (MEG) 系统具有 20 个与受试者头皮相符的 OPM 通道。我们对三名受试者进行了两项 MEG 实验:使用基于 OPM 的 MEG 系统和基于超导量子干涉装置 (SQUID) 的商用 MEG 系统评估体感诱发磁场 (SEF) 和听觉诱发磁场 (AEF)。我们通过计算基于 OPM 的 MEG 系统产生的等效电流偶极子 (ECD) 位置与基于商用 SQUID 的 MEG 系统计算出的 ECD 位置之间的距离来交叉验证我们系统的稳健性。我们对这三名受试者的 SEF 和 AEF 反应都实现了亚厘米级的精度。由于 OPM 通道与头皮的距离较近(12 毫米),预计未来基于 OPM 的 MEG 系统将提供增强的空间分辨率,因为与采用 SQUID 的传统 MEG 系统相比,它们将捕获更精细的空间特征。