高阶霍尔效应超出了普通的效果,解锁了电子传输特性和功能的更多可能性。先驱工作的重点是制造具有低晶格对称性的复杂纳米结构以生产它们。在本文中,我们从理论上表明,可以通过弯曲导电纳米膜来产生这种高阶霍尔效应,该纳米膜高度可调,也可以使各向异性呈各向异性。可以通过简单地改变施加的磁场的方向和幅度来调整其HALL响应。主要的霍尔电流频率也可以从零变为两倍,甚至可以更改为四倍的交替电场。这种现象严重取决于与弯曲几何形状引起的有效磁场偶极子和四极管相关的高阶蛇轨道的发生。我们的结果为弯曲导电纳米膜的空间工程磁通频率,当前的直流和频率乘法提供了途径。
摘要 — 无人机系统的声发射特性在许多情况下都备受关注。为了真实地表示方向特性和辐射声能,在真实条件下操作飞机非常有用。然而,对于典型的操作模式(例如巡航飞行),推导基于发射的声学量很困难。在本文中,使用麦克风阵列测量通过预定走廊的单次飞行来确定四轴飞行器无人机的方向性和声功率。记录的数据经过处理,既可以重建无人机的飞行路径,又可以表征其声发射。为了验证所提出方法的可靠性,使用来自具有单极子和偶极子方向性的移动源的模拟数据测试了信号处理。使用辐射方向空间的不同离散化并评估频率相关的方向性因子,讨论了如何在尽可能少的量的基础上尽可能全面地描述声辐射。
晶体场理论 (CFT) 是一种静电模型,该模型认为金属-配体键是离子键,纯粹由金属离子和配体之间的静电相互作用引起。对于阴离子(F - 、Cl - 、CN - ),配体被视为点电荷,对于中性分子(H 2 O、NH 3 、CO),配体被视为偶极子。孤立气态金属原子/离子中的五个 'd' 轨道具有相同的能量,即,它们是简并的。如果金属原子/离子周围有一个球对称的负电荷场,则这种简并性会保持。但是,当这个负场是由复合物中的配体(阴离子或偶极分子的负端)引起时,它会变得不对称,d 轨道的简并性会解除。这会导致 d 轨道分裂。分裂的模式取决于晶体场的性质。
铅卤化物钙钛矿纳米晶体是经典和量子光发射的有前途的材料。要了解这些出色的特性,需要对带边的激子发射进行彻底的分析,这是由于扩大效果而在整体和室温研究中无法达到的。在这里,我们报告了中间量子限制方案中单个CSPBBR 3 NC的光致发光的低温温度研究。我们揭示了观察到的光谱特征的尺寸依赖性:亮点激子能量分裂,TRION和BIEXCITON结合能以及光学声子复制频谱。此外,我们表明明亮的三重能量分离与纯交换模型一致,并且可以简单地考虑发射偶极子和发射状态的种群的方向来合理化所记录的极性特性和光谱。
当前状态和主要气候驱动因素的预期状况。elNiño南部振荡(ENSO)中性条件很容易,中央和东部太平洋中的接近平均赤道海面温度(SST)接近平均水平。许多全球模型表明在9月至11月期间,LaNiña条件的发展可能性很高。印度洋偶极子(IOD)是中性的,全球模型表明iOD指数在该月内达到或超过负阈值。Madden-Julian振荡(MJO)在本月初的第8阶段,具有较高的幅度。预计将在第2周向东传播到印度洋,幅度下降和海上大陆上的幅度下降。气候模型的校准气候可预测性工具(CPT)用于将全局模型输出降低到局部规模。这些结果表明,全国各地的降雨略低。
磁传感器可以检测含有铁磁材料的目标,因为它们会扭曲地球磁场。物体的磁场可以表示为多极级数展开。由于不存在单个磁荷,最低阶是偶极子,其衰减率为 1/r3。高阶多极子衰减的距离幂相应更高。对于大于最大目标维度阶的测量范围,偶极矩主导信号,定位和表征目标的问题变成了定位磁偶极子并测量其矩矢量的问题。在未知位置定位具有未知特征的目标需要确定六个未知数。三个未知数代表目标的位置,另外三个代表其磁矩矢量。检测和表征(就磁矩而言)不能分成不同的问题,而必须同时完成。对目标特征(例如,预先了解目标类型)或目标位置(例如,预先了解目标路径)应用不同的约束可以稍微降低问题的维数。在本文中,我们展示了无约束检测、定位和表征问题的结果。
磁场会对载流环路产生扭矩。如果我们再添加 N 个环路,扭矩会更大,因此 τ = Nτ ′ = NiBA sin θ 其中 A = ab 是环的面积。扭矩会尝试使环的 ⃗n 与外部 ⃗ B 对齐,就像电偶极子一样,因此我们将它们称为磁偶极子。这种对齐也就像条形磁铁一样。我们可以用其磁偶极矩 ⃗µ 来描述任何电流环路。⃗µ 的方向与法向矢量 ⃗n 相同,其大小为 µ = NiA 。外部磁场中的磁偶极子会感受到一个扭矩,该扭矩使偶极矩与场对齐:τ = µB sin θ 与电偶极子一样,存在一个基于偶极矩和场之间角度的定义势能。 U (θ) = − ⃗µ · ⃗ B 与电偶极子一样,势能的变化意味着环的旋转能量增加或减少。当偶极子与外部场对齐时(它们“希望”与场对齐),它们的最低能量为 − µB。当它们与场反向平行时,它们的最高能量为 + µB。
我们使用一对纳米结构从单个偶极子源(SDS)报告了单个光子的高效耦合。当将半径为0.43 µm的SNT放置在钻石纳米(DNT)和钻石纳米(DNW)附近时,发现了56%的最大耦合效率(ηp)为56%的最大耦合效率(ηp),将其最大耦合效率(ηp)置于硅纳米型(SNT)的指导模式中。此外,我们发现改变DNT/DNW的半径并不显着影响ηp值。此外,我们研究了从SDS到DNT的指导模式的单个光子的耦合效率(η)。将径向取向的SDS放置在半径0.4 µm的DNT的侧面时,发现最大η值为87%。我们发现,当DNT放置在另一个DNT和DNW附近时,ηp值会增强。目前的平台可能会在量子网络中打开新的可能性。
当前状态和主要气候驱动因素的预期状况。elNiño南部振荡(ENSO):LaNiña条件存在低于平均的赤道海面温度(SST)。一些全球模型表明,LaNiña可能会一直持续到2025年2月至4月,可能在3月至5月期间向ENSO中立条件过渡。印度洋偶极子(IOD):大多数模型预测iod中性偏见。Madden-Julian振荡(MJO):MJO指数目前位于海上大陆上,幅度很高。大多数模型表明其向东的繁殖,并在本月底以微弱的幅度越过印度洋。气候模型的校准气候可预测性工具(CPT)用于将全局模型输出降低到局部规模。这些结果表明,北环礁和中央环礁的一部分,降雨量低于正常的降雨量,该国的降雨量低于正常的降雨。
当前状态和主要气候驱动因素的预期状况。elNiño南部振荡(ENSO)中性条件是易于症状的,中央和东太平洋中部和东部的赤道海面温度(SSTS)接近平均。全球模型表明在10月至11月的LaNiña条件发作,并持续到1月至2025年1月至3月。印度洋偶极子(IOD)。大多数模型预测了IOD的中性谴责。Madden-Julian振荡(MJO)指数目前位于海上大陆上,具有很高的幅度。大多数模型表明,幅度将在12月初逐渐减弱。扩展范围的预测表明,MJO在本月的剩余时间里向东传播并持续在西太平洋上。气候模型的校准气候可预测性工具(CPT)用于将全局模型输出降低到局部规模。这些结果表明全国略高于正常的降雨。