一月份的降雨可能遍布全国。在贾夫纳地区以及Vavuniya,Mannar Ampara,Monaragala,Mathale,Mathale和Hambantota地区的某些地区可能在正常的降雨量下进行,并且在2月的剩余地区可能在2月的剩余地区可能。在3月的月份中,在Vavuniya,Trincomalee,Batticaloa,Ampara,Ampara,Polonnaruwa,Rathnapura,Rathnapura,Kegalle,Kalutara和Gampaha地区以及以上或以上或几乎正常的降雨范围内,在LaNina条件的剩余区域中可能降低了可能的同时,可能会在瓦沃尼亚,trincomaleea,batticaloa,Ampara,Polonnaruwa,Rathnapura,Rathnapura,Kegalle,Kalutara和Gampaha区,可能是在LaNina的剩余区域,可能是在正常的降雨范围内。(图3b)。1.2印度洋偶极子(IOD)更新
当前状态和主要气候驱动因素的预期状况。elNiño南部振荡(ENSO)中性条件是易于的,中央和东太平洋中部和东部太平洋的接近平均赤道海面温度(SST)。全球模型表示2024年11月至2025年1月的新兴LaNiña条件。印度洋偶极子(IOD)。大多数模型预测了IOD的中性谴责。Madden-Julian振荡(MJO)指数目前位于西太平洋。大多数模型都建议向东传播MJO并在本月后期越过印度洋。气候模型的校准气候可预测性工具(CPT)用于将全局模型输出降低到局部规模。这些结果表明,北环礁和中央环礁的一部分,降雨量低于正常的降雨量,该国的降雨量低于正常的降雨。
摘要:采用化学酰亚胺化法制备了具有刚性聚合物主链的氟化芳香族聚酰亚胺 (FAPI) 薄膜。聚酰亚胺薄膜表现出优异的力学性能,包括高达 8.4 GPa 的弹性模量和高达 326.7 MPa 的拉伸强度,以及突出的热稳定性,包括玻璃化转变温度 (T g ) 为 346.3–351.6 ◦ C 和空气中的热分解温度 (T d5 ) 为 544.1–612.3 ◦ C,以及在 500 nm 处>81.2% 的高无色透过率。此外,聚酰亚胺薄膜在 10–60 GHz 下表现出稳定的介电常数和低介电损耗,这归因于刚性聚合物主链的紧密堆积限制了电场中偶极子的偏转。还建立了分子动力学模拟来描述分子结构和介电损耗的关系。
先进材料的物理化学和热性能 光谱方法的热物理方面(成分、介电、声学、机械)。 功能电陶瓷材料:电介质、弛豫体、铁电体和多铁性材料。 四方钨青铜 (TTB) 和钙钛矿相关陶瓷的结构特性。 材料中的动态过程:模拟电介质偶极子的热诱导弛豫。 基本动力学和非均相过程动力学:等转化、高级线性增量程序、用于区分动力学模型的复杂动力学方法、主图。 复杂无机前体和有机(液晶、染料)化合物的热稳定性。 表面科学:薄膜和多孔材料。 用于获得软材料薄膜的激光辅助技术及其在生命科学中的应用。 科学贡献
具有相对简单架构的 MEMS 设备可用于创建可调涡旋光束。一种这样的设备被称为“筷子”设备,采用两个平行电极的形式,它们之间由一个狭窄的间隙隔开,并施加有电偏置电压 [23,24]。由于电极上的电荷分布类似于一系列平行偶极子 [24] 上的电荷分布,因此可以将其与 Aharonov-Bohm 效应和轴向磁化针的使用进行类比 [25]。正如最近的一篇论文 [26] 所解释的那样,电子束上的每种磁效应都可以使用一组电极来再现。与磁性材料相比,使用静电元件的优势包括它们具有更大的灵活性和可调性,以及可以使用高度紧凑的静电 MEMS 相位板来引入相对较大的相位效应。
图 1. (a) 单层 (1L) MoSe 2 和 ReS 2 晶体结构。上图显示晶体结构的侧视图,下图显示晶体结构的顶视图。侧视图显示了这些层状材料上偶极子平面内取向的示意图。(b) 样品 1 (S1) 的 ReS 2 -MoSe 2 异质结构的光学图像。插图是样品侧视图的示意图。(c) MoSe 2 、ReS 2 和 HS 区域的拉曼光谱。HS 拉曼光谱由来自各个 1L 区域的不同振动模式组成。(d) 在透明蓝宝石基板上制作的类似异质结构的三个不同区域的吸收光谱数据(样品 2,S2)。MoSe 2 A 和 B 激子峰清晰可见,ReS 2 较低能量吸收峰用箭头标记。HS 光谱由两个 1L 区域的峰组成。
当前状态和主要气候驱动因素的预期状况。elNiño南部振荡(ENSO)中性条件很容易,中央和东部太平洋中的接近平均赤道海面温度(SST)接近平均水平。许多全球模型表明,在10月至12月的季节,LaNiña条件的发展可能性很高。印度洋偶极子(IOD)。全球模型预测了本赛季中保持中立的IOD可能性。Madden-Julian振荡(MJO)在本月初的第1阶段,预计将在第1个两周内向东传播到印度洋和海洋大陆,并在本月底到达西太平洋。气候模型的校准气候可预测性工具(CPT)用于将全局模型输出降低到局部规模。这些结果表明,全国各地的降雨略低。
我们展示了将双态系统的集合耦合到公共腔场中如何影响该集合的集体随机行为。,该腔提供了系统之间的有效相互作用,并且参数修改了亚稳态状态之间的过渡速率。我们预测,腔体在临界温度下诱导相变,该温度线性取决于系统数量。它显示为自发对称性破坏,在双叉系统的固定状态下。我们观察到过渡速率独立于相变的放慢速度,但是对于系统 - 腔耦合的交替符号,速率修改消失,对应于偶极子的无序集合。我们的结果在极化化学中具有特别的相关性,在极化化学中,已经提出了腔的存在来影响化学反应。
图1。(a)单层(1L)Mose 2和Res 2晶体结构。顶部面板显示侧视图,底部面板显示了晶体结构的顶视图。侧视图显示了这些分层材料中偶极子的面内方向的示意图。(b)样品1(S1)的Res 2 -Mose 2异质结构的光学图像。插图是样本侧视图的示意图。(c)来自Mose 2,Res 2和HS区域的拉曼光谱。HS拉曼光谱由单个1L区域的不同振动模式组成。(d)在透明蓝宝石基板上制成的类似异质结构的三个不同区域的吸收光谱数据(样品2,S2)。Mose 2 A和B兴奋峰清晰可见,RES 2用箭头标记较低的能量吸收峰。HS光谱由两个1L区域的峰组成。
摘要:制备了NiO/β-Ga2O3异质结栅场效应晶体管(HJ-FET),并通过实验研究了在不同栅极应力电压(VG,s)和应力时间(ts)下器件的不稳定性机制。发现了器件在负偏压应力(NBS)下的两种不同退化机制。在较低的VG,s和较短的ts下,NiO体陷阱捕获/脱捕获电子分别导致漏电流的减少/恢复。在较高的VG,s或较长的ts下,器件的传输特性曲线和阈值电压(VTH)几乎永久地负移。这是因为界面偶极子几乎永久地电离并中和了异质结界面上的空间电荷区(SCR)中的电离电荷,导致SCR变窄。这为研究NiO/β-Ga2O3异质结器件在电力电子应用中的可靠性提供了重要的理论指导。