在这项工作中,我们从理论上探讨了偶然的/手性光 - 材料 - 互动是否需要捕获手性偏光元学的所有相关方面,或者是奇异的/ACHIRAL理论是否足够(例如,长波长/偶极近似值)。这个问题是不重要的,因为Achiral理论(哈密顿人)仍然具有手性解决方案。为了阐明这个基本的理论问题,简单的GAAS量子环模型与偶极子近似中单手光腔的有效手性模式结合在一起。裸体物质GAAS量子环具有非分类基态和双重变性的第一激发状态。对孤立的物质系统的归化激发态的手性或精神性质(叠加)仍然不确定。然而,在我们的奇偶校验中,在对手性腔的描述中,我们发现穿着的特征态(从头开始)会自动获得手性特征,并根据腔的手工歧视。相比之下,非分类的裸露物质状态(基态)在偶极子近似内的手性腔内没有表现出能量歧视。尽管如此,我们的结果表明,腔的惯性仍然可以印在这些状态(例如,角动量和手性电流密度)。总体而言,上面的发现突出了堕落状态在手性偏光元中的相关性。,因为线性极化腔的最新理论结果表明在集体强耦合条件下形成了沮丧且高度退化的电子接地状态,同样,这同样有望在手性偏振层中形成,因此可能会容易发生手柄对称性破坏效应。
电偶极子源已在集成光子学作为紧凑的电磁源中使用了几年,因为它们有效地耦合了光子引导模式[1,2]。最近通过利用了不同evaneScent波浪的建设性或破坏性干扰,最近证明了圆形极化电偶极子的近场方向性。[3,4]将介电或等离子波导耦合到这些圆形或椭圆形偶极子可以导致波导模式的定向激发,这是集成光子结构的有趣特征。然而,这些椭圆形电偶极子的近场仍然表现出反转对称性,如果偶极子位于倒置对称光子结构的中心,则可以去除方向性。为了恢复两个侧之间的对比属性,我们利用了平等时间对称耦合的波导的独特特性。奇偶校验时间(PT)对称性可以通过使用折射率的假想部分的平衡曲线在耦合的波导中实现,例如一种由增益材料制成的波导,另一个波导具有相等的损失。[5]这些结构的唯一性源于它们可以根据增益/损耗参数γ的值进行操作的两个方案,这些γ定义了波导中折射率的绝对想象部分。这两个方案之间的过渡发生在特殊点(EP),该点位于一定的γ值,取决于结构几何形状。在PT-对称状态(γ<γEP)中,结构的两个超模型都没有任何收益或损失,而在Pt-Orkent Orkent Orgime(γ>γEP)中,一个超级模式受益于增益和幅度爆炸,而其他经验的损失和实用型则减少。
聚氯乙烯(PVC)膜OM的光学和电性能。Abdullah,Dana A. Tahir,Shuja-Aldeen B. Aziz物理系,Al Sulaimani大学科学学院。 Sulaimani - 伊拉克。 摘要研究了聚氯乙烯薄膜的光学特性,其中包括它们的吸光度,透射率,反射光谱,带隙和折射率,在C T t = 75 = 75 =持续数小时24。 发现薄膜在可见的和接近1100 nm的红外区域表现出很高的透射率,低吸光度和低反射率。 然而,在超紫罗兰色地区发现薄膜的吸光度很高,峰值约为306 nm。 在不同频率和温度下获得了介电常数ε',介电损耗ε''和聚氯化氯化物的交流电导率。 实验结果表明,ε'和ε''随着频率的增加而降低,这表明对极化的主要贡献来自方向极化。 ε'的值随温度的增加而增加,这是由于高温下偶极子分子链的运动自由。 ﺍﻟﺨﺼﺎﺌﺹ ﺍﻟﺨﺼﺎﺌﺹ ﻭ ﺍﻟﻜﻬﺭﺒﺎﺌﻴﺔ ﻷﻏﺸﻴﺔ ﻷﻏﺸﻴﺔ ﺒﻭﻟﻴﻔﻴﻨﻴ)Abdullah,Dana A. Tahir,Shuja-Aldeen B. Aziz物理系,Al Sulaimani大学科学学院。Sulaimani - 伊拉克。摘要研究了聚氯乙烯薄膜的光学特性,其中包括它们的吸光度,透射率,反射光谱,带隙和折射率,在C T t = 75 = 75 =持续数小时24。发现薄膜在可见的和接近1100 nm的红外区域表现出很高的透射率,低吸光度和低反射率。然而,在超紫罗兰色地区发现薄膜的吸光度很高,峰值约为306 nm。在不同频率和温度下获得了介电常数ε',介电损耗ε''和聚氯化氯化物的交流电导率。实验结果表明,ε'和ε''随着频率的增加而降低,这表明对极化的主要贡献来自方向极化。ε'的值随温度的增加而增加,这是由于高温下偶极子分子链的运动自由。ﺍﻟﺨﺼﺎﺌﺹ ﺍﻟﺨﺼﺎﺌﺹ ﻭ ﺍﻟﻜﻬﺭﺒﺎﺌﻴﺔ ﻷﻏﺸﻴﺔ ﻷﻏﺸﻴﺔ ﺒﻭﻟﻴﻔﻴﻨﻴ)
本研究应用自适应混合独立成分分析 (AMICA) 来学习一组 ICA 模型,每个模型都通过为每个已识别的成分过程拟合分布模型进行优化,同时最大化多通道 EEG 数据集某些时间点子集内的成分过程独立性。在这里,我们将 20 模型 AMICA 分解应用于长时间(1-2 小时)、高密度(128 通道)EEG 数据,这些数据是在参与者使用引导想象来想象刺激 15 种特定情绪体验的情境时记录的。这些分解倾向于返回识别单一情绪想象期间的时空 EEG 模式或状态的模型。模型概率转变反映了情绪想象过程中 EEG 动态的时间过程,而这种过程因情绪而异。用于解释想象的“悲伤”和“快乐”的模型之间的转换更加突然并且与参与者的报告更加一致,而用于想象的“满足”的转换延伸到相邻的“放松”期。大脑可定位的独立成分过程 (IC) 的空间分布在参与者中 (跨情绪) 比在情绪 (跨参与者) 中更相似。在参与者中,在左侧前额叶、后扣带皮层、右侧岛叶、双侧感觉运动、运动前区和联想视觉皮层中或附近发现了情绪想象与放松之间 IC 空间分布 (即偶极子密度) 存在差异的大脑区域。在积极情绪和消极情绪之间没有发现偶极子密度的差异。高密度 EEG 动态变化的 AMICA 模型可能允许在情绪体验过程中基于数据洞察大脑动态,可能提高基于 EEG 的情绪解码的性能并增进我们对情绪的理解。
摘要:我们在实验中证明了在Sili-ConNanodisk阵列中对连续体(A-BICS)中意外结合状态的调整。A-BIC出现了多物的破坏性干扰,这些干扰是平面电偶极子和平面磁性偶极子,以及弱电四极杆和磁性四极杆。我们进一步表明,可以通过改变纳米风险尺寸或晶格周期来方便地调节A-BIC的光谱和角度位置。非常明显,角度可以调节到0°,这表明A-BIC从OFF-γ-BIC到AT-γ-BIC进行了有趣的过渡。我们的工作为具有高质量因素的光捕获提供了一种新的策略,可调节的A-BIC可以在低阈值激光,增强的非线性光学和光学传感中找到潜在的应用。
标准# 标准文本 HS-PS1-3 计划并开展调查,收集证据,比较宏观和微观尺度上物质的结构,推断粒子间电力的强度。澄清声明:重点在于理解粒子间力的强度,而不是命名特定的分子间力(例如偶极子 - 偶极子)。粒子的例子可以包括离子、原子、分子和网络化材料(例如石墨)。物质性质的例子可以包括熔点和沸点、蒸气压和表面张力。评估范围:评估不包括拉乌尔定律对蒸气压的计算。HS-PS2-1 分析数据以支持以下说法:牛顿第二运动定律描述了宏观物体上的净力、其质量和加速度之间的数学关系。澄清声明:数据示例可以包括受到净不平衡力作用的物体的位置或速度随时间变化的表格或图表,例如下落的物体、从斜坡上滑下的物体或被恒定力拉动的移动物体。评估范围:评估仅限于一维运动和以非相对论速度运动的宏观物体。HS-PS2-2 使用数学表示来支持以下说法:当系统上没有净力时,物体系统的总动量守恒。澄清声明:重点在于相互作用中动量的定量守恒及其定性意义。评估范围:评估仅限于两个在一维运动的宏观物体系统。HS-PS2-3 运用科学和工程思想来设计、评估和改进一种装置,以最大限度地减少碰撞过程中对宏观物体的力。 * 澄清声明:评估和改进的例子包括确定设备在保护物体免受损坏方面的成功程度以及修改设计以改进设备。设备的例子包括橄榄球头盔或降落伞。
标准# 标准文本 HS-PS1-3 计划并进行调查,收集证据,比较宏观和微观尺度上物质的结构,推断粒子间电力的强度。澄清声明:重点在于理解粒子间力的强度,而不是命名特定的分子间力(例如偶极子 - 偶极子)。粒子的例子可以包括离子、原子、分子和网络材料(例如石墨)。物质性质的例子可以包括熔点和沸点、蒸气压和表面张力。评估范围:评估不包括拉乌尔定律对蒸气压的计算。HS-PS2-1 分析数据以支持以下说法:牛顿第二运动定律描述了宏观物体上的净力、其质量和加速度之间的数学关系。澄清声明:数据示例可以包括受到净不平衡力作用的物体的位置或速度随时间变化的表格或图表,例如下落的物体、从斜坡上滑下的物体或被恒定力拉动的移动物体。评估范围:评估仅限于一维运动和以非相对论速度运动的宏观物体。HS-PS2-2 使用数学表示来支持以下说法:当系统上没有净力时,物体系统的总动量守恒。澄清声明:重点在于相互作用中动量的定量守恒及其定性意义。评估范围:评估仅限于两个在一维运动的宏观物体系统。HS-PS2-3 运用科学和工程思想来设计、评估和改进一种装置,以最大限度地减少碰撞过程中对宏观物体的力。 * 澄清声明:评估和改进的例子包括确定设备在保护物体免受损坏方面的成功程度以及修改设计以改进它。设备的例子包括橄榄球头盔或降落伞。评估范围:评估仅限于定性评估和/或代数运算。
摘要:量子点因其明亮、尺寸可调的发光特性而被应用于研究实验室和商业应用中。虽然经验合成和工艺优化已使许多量子点系统的光致发光量子产率达到或接近 100%,但我们对这种性能背后的化学原理的理解以及我们按需获取此类材料的能力却落后了。在本期观点中,我们介绍了我们对表面化学和量子点发光之间联系的理解现状。我们遵循从壳层生长开始的历史弧线,然后导致对表面衍生电荷捕获的原子描述,最终使我们对表面化学在发光特性中的作用有了更细致的了解,包括表面偶极子和振动电子耦合等新兴概念。F
下面我们将证明 TCDC 方法成功应用于 2-炔基烯酮 1 与硝酮 2 的对映选择性串联反应,其中硝酮表现为亲核 1,3-偶极子,得到形式上的 [3+3] 环加成产物 3(方案 1b)。[14] 此外,我们证明这些串联环化/[3+3] 环加成可以作为多组分反应进行,通过羟胺 4 和醛 5 原位形成硝酮。该方法适用于广泛的芳基和烷基取代底物,克服了此类对映选择性反应的一些当前局限性。[14] 该方法依赖于一种新的 CPA-Phos 型配体,在有和没有活化银盐的情况下均可操作。DFT 计算提供了有关新 Au(I) 复合物在此反应中的行为的见解。