• 太阳黑子每天都会提供视觉效果 • “活跃区域”的强磁性 • 11 年的活动周期 • 中低纬度带的形成 • “偶极子”场的 22 年极性周期
摘要 - 大型强子对撞机(LHC)的下一个升级(称为高亮度LHC)的目的是使加速器的碰撞率提高十倍。为了实现此目标,将更换Atlas和CMS实验相互作用区域之前和之后的偶极子和四极磁体。其中之一是分离重组偶极子MBRD,该偶极子MBRD的目标积分磁场为35 t·m的双孔径为105 mm,沿磁场沿4.78 m的磁场获得4.5 t。该磁铁开发的主要挑战之一是,这两个孔必须具有相同的极性,这会导致它们之间的磁串扰。因此,有必要为线圈开发左/右不对称的孔圈线圈设计,以补偿这种效果,这将产生不良的多物。另一个与两个孔径的极性相关的问题,这是通过在两个领孔周围组装的Al Alloy套筒的实现来管理的。该设计是在Cern-Infn Genova协议的框架内进行的,该行业的ASG超导体正在进行。1.6 m长的模型是建立并成功测试的,然后建造了一个全长原型,该原型最近交付给了CERN,而预计将在2022年初开始构建6个磁铁系列。此贡献将描述原型组装状态,还涵盖了领域的质量(FQ)方面,讨论了ASG的温暖磁性测量结果及其在谐波含量方面的含义。
除了高功率 TWT 监视器外,消声室中还有 3 个功率监视器。其中两个,监视器 #1(标准增益喇叭)和监视器 #2(套筒偶极子),连接到机架号 3 中的 HP431C 功率计。这两个监视器
激子的基本特性取决于库仑结合的电子和孔的自旋,山谷,能量和空间波形。在范德华材料中,这些属性可以通过层堆叠配置进行广泛设计,以创建具有静态平面外电偶极子的高度可调的层间激子,以牺牲振动性内置偶极偶极子的强度,负责轻度降低光线的振动。在这里我们表明,双层和三层2H-Mose 2晶体中的层间激子与地面(1 s)和激发态(2 s)的电端驱动耦合(2 s)。我们证明,这些独特的激子物种的杂种状态可提供强大的振荡力强度,大型永久性偶极子(高达0.73±0.01 ENM),高能量可调性(高达〜200 meV)以及对旋转和山谷特征的完全控制,因此激子G型可以在较大的范围内操纵ICKITON G-ICTOR。此外,我们观察到双层和三层激发态(2 s)互层激元及其与内部激子态(1 s和2 s)的耦合。我们的结果与具有自旋(层)选择性和超越标准密度功能理论计算的耦合振荡器模型非常吻合,促进了多层2H-MOSE 2作为一个高度可调的平台,可探索与强光相互作用相互作用的Exciton-Exciton相互作用。
耦合模式 电感 电感 电磁反向散射 工作频率 125kHz – 134kHz 13.56MHz 860MHz – 960MHz 天线线圈 线圈偶极子 最大工作距离可达 1m 附近:可达 1m 近距离:可达 10cm
摘要 目的。基于皮层电图 (ECoG) 的脑机接口 (BCI) 是恢复神经功能障碍患者运动和感觉功能的有前途的平台。这种双向 BCI 操作需要同时记录 ECoG 和刺激,这在存在强刺激伪影的情况下具有挑战性。如果 BCI 的模拟前端在超低功耗模式下运行,这个问题会更加严重,这是完全植入式医疗设备的基本要求。在本研究中,我们开发了一种新方法,用于在刺激伪影到达模拟前端之前抑制它们。方法。利用基本的生物物理考虑,我们设计了一种伪影抑制方法,该方法采用在主刺激器和记录网格之间传递的弱辅助刺激。然后通过约束优化程序找到该辅助刺激偶极子的确切位置和幅度。在模拟和幻影脑组织实验中测试了我们方法的性能。主要结果。通过优化程序找到的解决方案在模拟和实验中都与最佳抵消偶极子相匹配。在模拟和脑幻影实验中分别实现了高达 28.7 dB 和 22.9 dB 的伪影抑制。意义。我们开发了一种简单的基于约束优化的方法来查找产生最佳伪影抑制的辅助刺激偶极子的参数。我们的方法在刺激伪影到达模拟前端之前对其进行抑制,并可能防止前端放大器饱和。此外,它可以与其他伪影缓解技术一起使用,以进一步减少刺激伪影。
标题:基于超材料的单光子发射器 摘要:能够按需工作(即触发时发射)的单光子发射器对于量子信息处理的实际实施至关重要。对于高效的单光子发射器,需要优化包括量子效率和收集效率在内的整体效率。研究了量子点或纳米粒子等 2 级系统的固态等效物以及纳米金刚石、SiC 等材料中的色心作为嵌入不同宿主的偶极子发射器。为了获得更高的量子效率,必须操纵宿主介质中的光子局部态密度以实现最大 Purcell 因子。进一步的设计需要将光子有效地耦合到远场,通常是空气或光纤。在本次演讲中,我将介绍光子晶体微腔中的偶极子发射器以及超材料,以提高它们在特定方向上的整体发射效率。
脑电图(EEG)是神经科学研究和临床诊断方面的良好的非侵入性方法。它提供了较高的时间空间分辨率的脑活动。为了了解脑电图的空间动力学,必须解决反问题,即发现引起记录的脑电图活性的神经来源。逆问题是错误的,这意味着多种神经来源的配置可以唤起脑电图在头皮上的相同分布。人工神经网络先前已成功地用于发现一个或两个偶极子源。但是,这些方法从未解决过具有两个以上偶极子源的分布式偶极子模型中的反问题。我们提出了一种新型的卷积神经网络(CNN)体系结构Convdip,该架构在基于模拟的EEG数据的分布式偶极模型中解决了EEG逆问题。我们表明,(1)回合学会了从脑电图数据的单个时间点产生反方案,并且(2)在所有集中绩效指标上都优于最先进的方法。(3)在处理不同数量的来源时,它的灵感更大,幽灵来源较少,而错过的实际来源少于比较方法。它为人类参与者的真实脑电图记录产生了合理的反解。(4)训练有素的网络需要<40 ms才能进行单个预测。我们的结果符合汇聚的资格,是一种有效且易于应用的新颖方法,用于在脑电图数据中源定位,与临床应用相关,例如在癫痫学和实时应用中。
抽象的光学非线性在几种类型的光学信息处理协议中至关重要。但是,使用常规光学材料实现相非线性所需的高激光强度代表了几个光子体制中非线性光学的挑战。我们引入了一种红外腔量子电动力学(QED)方法,用于在反射设置中对单个THZ脉冲的非线性相移,以输入功率为条件。功率依赖性相位在0的顺序上移动。1π只能使用仅几个µW输入功率的飞秒脉冲来实现。所提出的方案涉及少量的子带量子量井过渡偶极子,始终耦合到红外谐振器的近场。由于通过有效的偶极chiring机制从材料偶极向红外真空的频谱非谐度转移,该场演化是非线性的,该机制会瞬时从真空场中瞬时破坏量子孔的过渡,从而导致光子阻滞。我们开发了分析理论,该理论描述了印记非线性相位转移对相关物理参数的依赖性。对于一对量子井偶极子,相对于偶极转变频率和松弛速率的不均匀性,相位控制方案显示出可靠的。基于lindblad量子主方程的数值结果验证了材料偶极子填充到第二激励歧管的制度中的理论。与需要强烈的光 - 物质相互作用的常规QED方案相反,所提出的相位非线性在弱耦合方面最有效,从而增加了使用当前的纳米光电技术实现实验实现的前景。