生物膜是不对称结构,其不对称性是由于双层小叶中脂质身份的差异以及膜上脂质和小分子的不均匀分布而产生的。蛋白质还可以根据其形状,序列和与脂质的相互作用来诱导和调节膜不对称。由于天然膜系统的复杂性以及在体外产生相关的不对称双层系统而难以理解,膜不对称如何影响大分子行为。在这里,我们提出了一种方法,该方法利用了跨膜β-桶外膜蛋白OPMA的有效,单向折叠,以创建具有已知方向的蛋白质诱导的蛋白诱导的偶极子(由已知方向的蛋白诱导的偶极子)(由序列变异引起的序列变异,该序列变异构成了OMPA回路)。然后,我们将不同的OMPA变体的折叠动力学和稳定性表征为这些蛋白质脂质体。我们发现,折叠OMPA的主要序列和折叠发生的膜的偶极子都在调节折叠速率的情况下起着重要作用。至关重要的是,我们发现,通过将折叠蛋白上的电荷与膜偶极子互补匹配,可以增强折叠动力学和折叠OMPA的稳定性。结果暗示,细胞如何利用膜包裹的蛋白质中环电荷来操纵膜环境以进行适应和存活。
摘要:由于各个单元之间的相互作用,可以从有序的发射器集合中出现集体光学性质。卤化物钙钛矿纳米晶体的超晶格表现出集体光发射,受偶极子 - 同时激发的纳米晶体之间的偶极子相互作用。与未偶联的纳米晶体的发射相比,这种耦合改变了发射能和速率。我们证明了量子限制如何控制合奏中纳米晶体之间耦合的性质。通过控制纳米晶体的大小或对BOHR半径的组成控制来改变限制的程度。在由弱受限制的纳米晶体制成的超晶格中,集体发射以更快的发射速率进行红移,显示了超荧光的关键特征。相比之下,更强的量子限制纳米晶体的集体发射以较慢的发射速率进行蓝色。两种类型的集体发射都表现出相关的多光子发射爆发,显示出不同的光子束发射统计。量子限制改变了纳米晶体内过渡偶极子的首选比对,并切换邻居之间的相对偶极子方向,从而产生了相反的集体光学行为。我们的结果将这些集体效应扩展到相对较高的温度,并更好地了解固态处的激子相互作用和集体排放现象。关键字:纳米晶体,铅卤化物钙钛矿,超晶格,纳米晶体耦合,超荧光,量子限制T
为了提高晶体管的密度、提高性能、降低功耗和降低每个晶体管的成本,人们对晶体管尺寸的要求推动了接触多晶硅间距 (CPP) 的缩小,如图 1 和图 2 所示,这反过来又需要缩小栅极长度以释放更多空间来降低接触电阻。由于金属栅极图案的空间有限,RMG 的持续缩小对 7nm 及更高技术的多 Vt 提出了挑战。此外,自对准接触 (SAC) 成为未来技术节点上提高器件成品率的关键要素。因此,需要采用简化的 RMG 堆叠集成方案来确保良好的栅极凹槽控制和均匀的 SAC 封装。由不同栅极金属厚度 (金属多 Vt) 实现的多 Vt 选项将在大幅缩小间距时面临可扩展性挑战。在这项工作中,我们提出了一种无体积多 Vt 解决方案来定义具有不同偶极子层厚度的所有 Vt 类型。氧化物偶极子层与基于 SiOx 的界面层 (IL) 相互作用,产生 Vt 偏移,伴随其基团电负性差异 [6]。所提出的方案被证明与双 WFM 工艺兼容,并且由于其体积小,可适用于高度缩放的设备和新颖的设备架构。在同一芯片上集成多个偶极子厚度非常具有挑战性,因为偶极子厚度非常薄,通道可能会受到图案损坏。在本文中,我们
我们提出了一种将航空磁力数据和卫星数据相结合的新方法,该方法应用了等效偶极子层和偶极子的球谐函数 (SH) 展开。该方法包括两个步骤:(1) 等效偶极子层的磁参数反演和 (2) 将磁参数转换为 SH 系数。使用这种方法,SH 分析可用于区域研究区域,例如,可以用卫星数据替换航空磁力数据的长波长范围。我们在澳大利亚磁异常图的第三版、第四版和第五版上测试了我们的方法,这些地图使用独立的航空磁力数据集进行了长波长校正。结果表明,在 SH 度 40 至 110 范围内(对应于半波长 180 至 500 公里),根据长距离控制线调整的磁异常图与 LCS-1 卫星模型具有良好的一致性,而澳大利亚磁异常图第三版在此光谱范围内对长波长的控制较差。我们的分析表明,即使是经过精心处理的第五版,如果用卫星数据替换长波长数据,也会受益匪浅。
摘要:表现出激素耦合的有机染料的聚集体具有广泛的应用,包括医学成像,有机光伏和量子信息设备。可以修改染料单体的光学特性,作为染料骨料的基础,以增强激子耦合。Squaraine(SQ)染料对于这些应用的吸光度很强,在可见范围内具有吸引力。先前已经检查了取代基类型对SQ染料光学特性的影响,但尚未研究各种取代基因位置的影响。在这项研究中,使用密度功能理论(DFT)和时间依赖性密度功能理论(TD-DFT)来研究SQ取代的位置与染料聚集系统性能性能的几个关键特性,即差静态偶极子(∆ D),过渡次要次偶极力矩(µ),Hydrophobicition和Hydrophobicity和the grout(ΔD)。我们发现,沿染料的长轴连接取代基可能会增加µ,而放置长轴则显示出增加∆ d并减少θ。θ的降低很大程度上是由于∆ d方向的变化,因为µ的方向不受取代位置的显着影响。疏水性降低时,当电子粉状取代基靠近吲哚美氨酸环的氮。这些结果提供了对SQ染料的结构与毛皮关系的见解,并指导染料单体的设计,用于具有所需属性和性能的聚集系统。
我们报告了量子计算在重夸克偶极子光谱研究中应用的首次演示。基于重夸克和反夸克系统的康奈尔势模型,我们展示了如何在 IBM 云量子计算平台上用 VQE 方法制定和解决这个汉密尔顿问题。由于全局去极化噪声通道导致的误差通过零噪声外推法进行校正,结果与预期值高度一致。我们还推广了 VQE 方法,通过相对于基态的正交化来解决激发态。这种新方法已被证明适用于无噪声量子模拟器上的夸克偶极子系统,并且可以轻松应用于解决许多其他物理系统中的类似激发态问题。
2024 年 6 月 25 日 摘要 目标:使用简化的数学方法定量探索单个皮质神经元细胞体之间的跨膜电位差异如何产生脑电图 (EEG) 的皮肤表面电位,以及如何在院前环境中使用 EEG 检测缺血性中风。方法:从静电学、解剖学和生理学的基本原理出发,可以表征单个皮质神经元细胞体激活过程中产生的表观偶极子的强度。皮质神经元中的瞬时偶极子强度取决于其细胞体的大小和表面积、其电容以及细胞体上出现的跨膜电位差异。EEG 的总电位是许多单个偶极子强度、方向和与电极的距离的函数。皮质神经元活动和放电率降低模拟了急性缺血对一个或两个 EEG 电极下组织的影响。结果:如果在任何时刻,25 个细胞体在最靠近皮肤表面电极的 1 cm 3 体积的灰质中随机活动,则可以模拟临床上真实的 EEG 记录。仅在一个 EEG 电极下完全停止神经活动会导致总体 EEG 信号幅度和频率略有下降。但是,在两个 EEG 电极下,神经活动减少到正常值的 5% 到 50% 之间,会导致 EEG 幅度与正常值相比下降 30% 到 70%。结论:这种电活动变化可用于快速早期检测急性缺血性中风,可能加快溶栓或再灌注治疗,前提是两个电极都位于缺血区域,并将信号与头部另一侧的正常信号进行比较。关键词 : 动作电位、救护车、诊断、偶极子、早期干预、脑电图、缺氧、发病率、神经元、护理人员、即时诊断系统、院前诊断、快速、再灌注、血栓溶解、治疗时间、TPA、远程医疗