'类似激光的“远程相干量子现象可能会在细胞骨架微管中生物学发生。本文介绍了我们称为“超赞”和“自我诱导的透明度”现象中发生的现象中发生的理论预测。考虑了在微管的空心核心和量化的电磁辐射场中被罚款的水分子的电偶极场之间的相互作用,并且将微管被理论化以扮演非线性相干光学设备的作用。超高是一种特定的量子机械排序现象,其特征时间比热相互作用的时间短得多。因此,微管中的光学信号(和计算)将不受热噪声和损失。微管网络和其他细胞骨架结构网络中的超级型光学计算可能为生物分子认知和意识的底物提供基础。
我们报告了量子计算在重夸克偶极子光谱研究中应用的首次演示。基于重夸克和反夸克系统的康奈尔势模型,我们展示了如何在 IBM 云量子计算平台上用 VQE 方法制定和解决这个汉密尔顿问题。由于全局去极化噪声通道导致的误差通过零噪声外推法进行校正,结果与预期值高度一致。我们还推广了 VQE 方法,通过相对于基态的正交化来解决激发态。这种新方法已被证明适用于无噪声量子模拟器上的夸克偶极子系统,并且可以轻松应用于解决许多其他物理系统中的类似激发态问题。
在本文中,提出了一个LA 2 O 3 /HFO 2双层偶极 - 偶极 - 第一(DF)工艺,并通过超低温度PVD PVD介电层压板进行了研究,以实现较低的栅极有效工作功能(EWF),以实现整体岩石3D-IC(M3D)应用。全面研究了超低温度LA-偶极子对EWF调制和界面特性的影响。发现平移电压(V FB)用较低的1nm La 2 O 3厚度呈60 mV,这提供了满足SI传导带边缘EWF调制的有效方法。此外,LA 2 O 3 /HFO 2 BI-LAYER DF工艺抑制了电子陷阱 /逐渐陷阱密度(非)和界面陷阱密度(DIT),以提高设备性能。这些结果在低热整合中表现出有希望的双层DF工艺,用于高级IC技术。
里德堡原子是处于主量子数 n 的高度激发态的原子,人们对其的研究已有一个多世纪 [1,2]。在过去二十年里,里德堡原子物理学,特别是在超低温下 [3-8],由于其“夸张”的特性,为一系列激动人心的发现做出了贡献。高度激发的价电子与原子核之间的巨大距离以及随之而来的松散结合,导致了巨大的电极化率以及与周围原子的强长程偶极-偶极和范德华 (vdW) 相互作用。由于原子间的 vdW 相互作用取决于它们的极化率(对于几乎与氢相似的里德堡原子,其尺度为 n7),因此可以证明 vdW 力的尺度为 n11。因此,使用 n 在 50–100 范围内的里德堡原子可以将相互作用能量提高 17 到 20 个数量级 [9]。
目标:本研究旨在通过使用手偶作为互动学习媒体来提高 RA Darunnajah 幼儿的口语能力。方法:采用双周期课堂行动研究设计,包括直接观察、访谈和记录。本研究重点衡量手偶在提高口语能力方面的有效性。结果:使用手偶媒体显著提高了儿童积极参与口语的能力,扩大了他们的词汇量,增强了他们的自信心。用手偶讲故事的活动创造了一个充满活力且引人入胜的学习环境,支持语言发展。新颖性:本研究强调了手偶等创意媒体对提高幼儿口语能力的影响,尤其是对于那些害羞或缺乏说话信心的儿童。
近年来,随着新兴国家工业化进程加快、经济发展迅速,矿产资源需求不断增加,矿产资源可持续供给危机感不断增强,资源民族主义思潮回潮。引发资源供给结构变化,正处于重大变革时期。随着陆地资源日益枯竭,深海资源的勘探和采集研究正在快速进展。在日本的专属经济区和大陆架,已发现许多深海矿产资源潜力区,如含有金属和稀有元素的黑子型海底热液矿床、富钴结壳等。据估计,日本拥有世界最大的黑子型海底热液矿床潜在资源量,拥有仅次于美国的世界第二大富钴结壳潜在资源量。然而,如何将潜在有前景的海域缩小到具有资源吸引力的海域,这一方法尚未完全确立。此外,由于深海海底采矿技术刚刚起步,矿藏的勘探和开采活动仍处于起步阶段。因此,需要开发新的勘探技术并开发有效的采矿技术。此外,作为世界第三大经济体,日本强劲的工业活动和丰富的生活方式得益于其丰富的能源和资源储备,包括石油、天然气、铜和镍。换句话说,日本是世界上最大的能源和资源消费国之一。然而,日本自身的能源和资源并不多,目前大部分依赖从其他国家进口。此外,近年来,在亚洲经济高速增长的背景下,全球对这些资源和能源的需求急剧增加,日本确保稳定供应的难度加大。尤其是日本的石油、天然气、铜、镍等矿产资源几乎100%依赖海外,因此,海外资源竞争加剧、产地冲突、甚至经济形势的变化,供需环境的变化引起需求波动,使得资源价格长期呈上涨趋势,为资源价格波动创造了条件。随着人口向城市集中、老龄化导致的生活方式改变等原因,电气化不断推进,能源需求不断扩大,确保能源和资源对于改善人们的生活至关重要。因此,开发自己的海洋资源对日本来说极其重要。但对深海采矿车辆的实时监控研究较少,导致高效深海采矿变得困难。常规深海探测方法包括大地测量卫星遥感技术、船载声纳技术、自主水下机器人(AUV)巡航成像技术等,但这些方法难以实现实时探测,且存在易被篡改等问题。受环境影响较大,准确率较低。可见光成像系统的引入对于准确定位广阔海底的资源并有效收集至关重要。为此,我们开展了研究,利用先进的人工智能技术来克服这些问题。
摘要:这项研究涉及四种地球物理方法的应用和分析(电阻率断层扫描,微重力,磁性,M.A.S.W.)用于在受控场地条件下检测隧道。Resistivity断层扫描为目标和近表面地质形成提供了令人满意的信息。偶极偶极子和杆偶极是检测到的空隙的最合适的阵列,尤其是当后来的前向前和逆转测量值时。耗时且费力的微重力方法适用于隧道的描述。先验信息对于微重力数据的反转是必需的。从表面波的多通道分析中得出的伪部分显示了两个地质层,并成像了浅平滑的异质性,归因于地下目标。但是,由于较低的横向分辨率,目标限制并未很好地定义。由于目标和宿主岩之间的磁化敏感性增加,梯度磁方法可以准确地描述隧道。当目标是当代人制造的结构时,通常会满足这种情况。
– I2 发电资源(包括发电机端子)通过升压变压器的高压侧连接到 100 kV 或以上的电压:a) 单个总铭牌额定值大于 20 MVA。或者,b) 工厂/设施总铭牌额定值大于 75 MVA – I4 分散式发电资源,总容量大于 75 MVA(总铭牌额定值),并通过一个系统连接,该系统主要用于将这种容量输送到电压为 100 kV 或以上的公共连接点 o BES 定义中确定的黑启动资源,包含 I3 适用性部分未规定的排除
量子纠缠态的控制和操纵对于量子技术的发展至关重要。一种有前途的途径是通过它们的光学偶极-偶极相互作用耦合固态量子发射器。纠缠本身就具有挑战性,因为它需要发射器之间的纳米距离和近乎简并的电子跃迁。在这里,我们实施高光谱成像来识别耦合的二苯并蒽分子对,并通过使用斯塔克效应调整分子光学共振来找到最大纠缠的超辐射和亚辐射电子态的独特光谱特征。我们展示了使用振幅和相位定制的激光场对长寿命亚辐射离域态进行远场选择性激发。耦合分子的光学纳米显微镜揭示了由其激发路径中的量子干扰引起的空间特征,并揭示了每个发射器的位置。受控电子态叠加将有助于破译由相干耦合控制的更复杂的物理或生物机制并开发量子信息方案。