1 魏思奇 , 余双舰 , 吴思武 , 唐征海 , 郭宝春 , 张立群 .基于功能性橡胶颗粒集成的宽温域橡胶阻尼材料 .高分子学报 , 2024 , 55(3), 338 - 348.2 Sun, T. L.; Gong, X. L.; Jiang, W. Q.; Li, J. F.; Xu, Z.B.; Li, W. H. Study on the damping properties of magnetorheological elastomers based on cis -polybutadiene rubber.Polym.Test , 2008 , 27(4), 520 - 526.3 Prasertsri, S.; Rattanasom, N. Mechanical and damping properties of silica/natural rubber composites prepared from latex system.Polym.Test , 2011 , 30(5), 515 - 526.4 Liu, C.; Fan, J.; Chen, Y.Design of regulable chlorobutyl rubber damping materials with high-damping value for a wide temperature range.Polym.Test , 2019 , 79, 106003.5 Soleimanian, S.; Petrone, G.; Franco, F.; De Rosa, S.; Kołakowski, P. Semi-active vibro-acoustic control of vehicle transmission systems using a metal rubber-based isolator.Appl.Acoust., 2024 , 217, 109861.6 唐征海 , 郭宝春 , 张立群 , 贾德民 .石墨烯 / 橡胶纳米复合材料 .高分子学报 , 2014 , (7), 865 - 877.7 Xia, S.; Chen, Y.; Tian, J.; Shi, J.; Geng, C.; Zou, H.; Liang, M.; Li, Z.Superior low-temperature reversible adhesion based on bio-inspired microfibrillar adhesives fabricated by phenyl containing polydimethylsiloxane elastomers.Adv.Funct.Mater., 2021 , 31(26), 2101143.8 Zhu, Q.; Wang, Z.; Zeng, H.; Yang, T.; Wang, X.Effects of graphene on various properties and applications of silicone rubber and silicone resin.Compos.Part A: Appl.Sci.制造。,2021,142,106240。9刘z。 Shi,J。; Zhao,n。; Li,Z。通过环状三磷酸磷酸基碱催化的环环(CO)聚合物化,高分子量的高分子量聚二乙基硅氧烷和随机聚二甲基氧烷-Co-二甲基硅氧烷)共硅氧烷。欧洲。polym。J.,2022,173,111280。10什叶,J。; Liu,Z。; Zhao,n。; Liu,s。; Li,Z。由三挥手有组织酶催化为明确定义的聚(二甲基硅氧烷)S催化的己二甲基甲硅氧烷的己二甲硅氧烷的控制环的聚合。大分子,2022,55(7),2844-2853。11 Rius-Bartra,J.M。; Ferrer-Serrano,n。; Agulló,n。; Borrós,S。高抗性有机硅橡胶减少了杨的模量。 介电硅橡胶的工业选择。 J. Appl。 polym。 SCI。 ,2023,140(37),E54405。 12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。11 Rius-Bartra,J.M。; Ferrer-Serrano,n。; Agulló,n。; Borrós,S。高抗性有机硅橡胶减少了杨的模量。介电硅橡胶的工业选择。J. Appl。polym。SCI。 ,2023,140(37),E54405。 12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。SCI。,2023,140(37),E54405。12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。橡胶化学。技术。,1986,59(2),255-262。13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。Macromolecules,2017,50(9),3532-3543。14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。J. Appl。polym。SCI。SCI。,2019,136(12),47231。15 Wang,Y。; Cao,R。; Wang,M。;刘x。 Zhao,X。; lu,y。;冯,a。; Zhang,L。通过阴离子共聚和随后的环氧化的苯基硅橡胶设计和合成苯基硅橡胶。 聚合物,2020,186,122077。 16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。 polym。 测试。 ,2021,93,106885。 17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。15 Wang,Y。; Cao,R。; Wang,M。;刘x。 Zhao,X。; lu,y。;冯,a。; Zhang,L。通过阴离子共聚和随后的环氧化的苯基硅橡胶设计和合成苯基硅橡胶。聚合物,2020,186,122077。16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。 polym。 测试。 ,2021,93,106885。 17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。polym。测试。,2021,93,106885。17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。J. Appl。polym。SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。SCI。,2023,140(1),E53262。18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。polym。eng。SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。SCI。,2024,10.1002/pen.26663。19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。J. Appl。polym。SCI。 ,2011,119(5),2737-2741。SCI。,2011,119(5),2737-2741。
马来西亚马来西亚斯巴赫大学的工程学院Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia D Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia E Catalysis Science and Technology Research Center, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia, Malaysia马来西亚UPM,UPM,UPM的种植园研究所,马来西亚G可持续发展科学与技术研究所,Unversitat Polyt polyt polyt polyt`Adennica de catalunya,西班牙,西班牙的社会科学与人文学院肯塔基州化学工程大学学院,211 Crounse Hall,4810 Alben Barkley Drive Paducah,肯塔基州42002,美国,美国
电动汽车:电动汽车中的电池增加重量。为了安全性和效率,必须通过在汽车的其他组件中使用较轻的材料来补偿这种体重的增加。因此,电动汽车的吸收将推动对塑料的需求。,美国化学委员会已经估计,从2012年到2021年,每辆车的塑料量已增加16%,平均为411磅。13行业领导的市场研究估计,电动汽车塑料市场将从2022年的37亿美元增长到2027年的126亿美元。14个电动汽车生产商已经开始考虑如何使供应链净零。大众汽车的净目标包括其供应链,而通用汽车在2023年在其车辆中使用了超过3900万磅的可回收塑料,并设定了目标以增加此数量,EV生产商Rivian的目标是40%的回收和生物含量,用于在其车辆中使用的基于2030年的产品中的基于20303030。15,16,17
摘要对于实现联合国可持续发展目标(SDG)至关重要,加强对国家和地区范围内土壤的特性和过程的理解至关重要。这项研究的目标是去除由于基于纳米材料的氮化硼纳米层(B 5 N 10 -NC)而导致的土壤中Cr,Mn,Fe,Zn,W,CD的过渡金属。通过材料建模描绘了被困在B 5 N 10 -NC中的有毒过渡金属的电磁和热力学属性。已经研究了B 5 N 10 -NC的Cr,Mn,Fe,Zn,W和CD捕获的行为,用于感测土壤金属阳离子。b 5 n 10 -nc是在过渡金属(Cr,Mn,Fe,Zn,W,CD)的存在中设计的。案例表征是通过DFT方法进行的。这些配合物的共价特征的性质代表了B 5 n 10 -NC中的P状态和氮之间的类似能量和视力,具有Cr,Mn,Mn,Fe,Fe,Zn,W,x↔B5 N 10 -NC Complexes的B 5 N 10 -NC。此外,核磁共振(NMR)分析表明,通过在原子检测过程中B 5 N 10 -NC中的捕获中,Cr,Mn,Fe,Zn,W和CD周围的峰值峰,从土壤中捕获和去除。但是,可以看出各向同性和各向异性张量的化学屏蔽处理中有些波动。基于这项研究的结果,b 5 n 10 -
尽管本出版物中的所有声明和信息均被认为是准确可靠的,但它们仅供参考,免费提供,用户应承担使用产品或应用所述建议所获得结果的风险和责任。对于所述产品或设计、数据或信息,不作任何明示或暗示的保证,包括适销性或特定用途适用性的保证。关于产品可能用途的声明或建议,不代表或保证任何此类使用不侵犯专利,也不构成侵犯任何专利的建议。用户不应假设已指明毒性数据和安全措施,或可能不需要其他措施。
在过去十年中,纳米科学和纳米技术已成为全球研究和开发的变革性领域。纳米级材料操控技术的发展从根本上改变了材料、设备和系统的设计和理解方式。纳米技术基于原子级材料和系统的使用,具体来说是纳米级(一纳米等于十亿分之一米)[1]。纳米催化就是其潜力的一个明显例子,通过操控反应中心的尺寸、成分和形态可以精确控制化学反应。该子领域对反应动力学、工业过程和能源应用产生了重大影响[2]。本综述旨在探索纳米粒子的潜力,特别是它们在催化中的应用。过渡金属纳米粒子在有机反应和先进的工业过程中表现出卓越的催化活性。了解这些材料可以显著提高能源效率和可持续性[3]
Given the scale and importance of scope 3 target-setting, and an increasing urgency for action, the SBTi has launched a process to review and update scope 3 target-setting guidance, methods, and criteria with the aim of ensuring the framework effectively catalyzes value-chain decarbonization while being cognisant of barriers corporates face.
摘要:Tau淀粉样蛋白的催化光氧是对抗aopanties的潜在治疗方法,包括alz Heimer病(AD)。然而,tau是一个复杂的靶标,其中包含大分子大小和异质的同工型/特性型。尽管使用催化剂1和用肝素预处理的重组TAU确认了催化光氧,但尚未阐明其对人类患者TAU的影响。在这项研究中,侧重于组氨酸的含氧化合物,我们构建了两个在人类患者tau上使用时,能够定量评估催化活性的测定系统:(1)在含氧组氨酸位点标记荧光和(2)LC-MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS含有含有的含量。使用这些测定法,我们将2确定为人类氧合的有希望的催化剂。此外,我们的结果表明,肝素诱导的总tau在开发有效的光氧催化剂方面与实际的AD患者TAU不同。
抗击气候变化的紧迫性需要向可持续能源系统过渡,而先进的催化过程起着至关重要的作用(Blay-Roger等人。)。但是,这种过渡面临着重大挑战,包括对化石燃料的根深蒂固的依赖以及克服技术,经济和基础设施障碍的需要(Blay-Roger等,2024b)。最重要的挑战之一是对化石燃料的根深蒂固的依赖,它们深深地嵌入了我们的工业和经济体系中,在我们的工业和经济体系中,将生物量和CO等可再生资源转移到了诸如生物量和CO 2之类的可再生资源中,需要克服明显的技术,经济和基础结构障碍(Nawaz等,20223年)。从技术上讲,在轻度条件下运行的有效和选择性催化剂对于最大化产品产量和最大程度地减少废物至关重要,同时还可以解决催化剂的稳定性和对失活的耐药性(Fanhui等,2022)。在经济上,需要大量的初始投资和全面的生命周期评估,以确保新的催化过程的生存能力(Blay-Roger等,2024a)。从逻辑上讲,将这些过程集成到现有的工业框架中需要战略规划和政策支持。基础结构,过渡涉及对能网和供应链的显着变化,需要可靠的可再生原料和有效的转换方法。跨学科合作对于解决这些复杂挑战至关重要。催化是化学工业的核心,它正在发展,以通过将可再生资源转换为有价值的产品来满足可持续性原则。研究主题“通过碳足迹催化可持续燃料和衍生物”强调了催化技术的进步,这些技术减少了碳排放并增强了环境可持续性。本研究主题解决了提高催化效率和选择性的关键挑战和策略,从而有助于可持续且经济上可行的过程。它强调了高级材料科学和化学工程在培养中的重要性